

WWZ Analysis: BDT Summary

Keegan Downham, UCSB

WWZ Group Meeting: 26 September 2023

Baseline (Cut-Based Analysis)

Which bins are the most sensitive?

No changes in selection since numbers were shared w/ Kelci

SR	-	Summary		Composition of N_{total}						
Bins	N _{total}	NonResonant WWZ	ZHWWZ	ZZ	$\mathrm{tt}\mathrm{Z}$	Higgs	WZ	Other		
Bin1	1.33 ± 0.21	0.65 ± 0.01	3.05 ± 0.01	0.62 ± 0.02	0.32 ± 0.03	0.27 ± 0.19	0.11 ± 0.08	0.01 ± 0.01		
Bin2	0.96 ± 0.11	0.74 ± 0.01	1.35 ± 0.01	0.62 ± 0.02	0.38 ± 0.03	-0.06 ± 0.10	0 ± 0	0.01 ± 0.01		
Bin3	1.39 ± 0.22	1.48 ± 0.01	0.35 ± 0.01	0.39 ± 0.02	0.83 ± 0.05	-0.06 ± 0.16	0.18 ± 0.13	0.04 ± 0.04		
Bin4	3.60 ± 0.23	5.14 ± 0.01	0.15 ± 0.01	0.50 ± 0.02	2.51 ± 0.09	0.45 ± 0.17	0.12 ± 0.12	0.02 ± 0.01		

Table 19: Yields in $e\mu$ SR bins (as of September 1st, 2023)

SR	2	Summary		Composition of N_{total}						
Bins	N_{total}	NonResonant WWZ	ZHWWZ	ZZ	ttZ	Higgs	WZ	Other		
Bin5	3.25 ± 0.22	2.33 ± 0.01	0.95 ± 0.01	1.32 ± 0.03	1.32 ± 0.06	0.61 ± 0.21	0 ± 0	0.01 ± 0.01		
Bin6	6.18 ± 0.36	1.97 ± 0.01	1.52 ± 0.01	4.58 ± 0.05	1.12 ± 0.06	0.42 ± 0.35	0 ± 0	0.06 ± 0.04		
Bin7	3.15 ± 0.18	0.57 ± 0.01	0.68 ± 0.01	2.78 ± 0.04	0.27 ± 0.03	0.10 ± 0.17	0 ± 0	0.01 ± 0.01		

Table 20: Yields in $ee/\mu\mu$ SR bins (as of September 1st, 2023)

Training Region (TR) Selection

	4-lepton analysis selection criteria
Category	Cut
Preselection	
Triggers	Passes at least one dilepton $(ee/e\mu/\mu\mu)$ trigger
Lepton ID	4 leptons (e/μ) passing "tight" requirements of TOP-UL-MVA ID
Lepton p_T	$p_T^{leading} > 25~{\rm GeV}, p_T^{subleading} > 15~{\rm GeV}, p_T^{3rd,4th} > 10~{\rm GeV}$
Z-candidate leptons	same-flavor, opposite sign pair closest to m_Z
Z mass window	Z candidate leptons must satisfy $ m_{ll} - m_Z < 10$ GeV
Additional lepton requirements	Muons (Electrons) must satisfy $ IP_{3D}/\sigma_{IP_{3D}} < 4$ (and $I_{rel,03,all} < 0.2$)
QCD low mass resonance veto	Any opposite charge pair of leptons must have $m_{ll} > 12$ GeV
b-tagged jet veto	Require 0 b-tagged jets in event ($p_T > 20$ GeV, $ \eta < 2.4$, DeepCSV loose WP, loose Jet ID)
Same-Flavor Channel	W-candidate leptons are the same flavor
Off-Z peak requirement	W candidate leptons must have $ m_{\ell\ell} - m_Z > 10$ GeV
Signal Regions - Cut Based	
Bin A	$p_T^{miss} > 120 { m GeV}$
Bin B	$70 \text{ GeV} < p_T^{miss} < 120 \text{ GeV}, 40 \text{ GeV} < p_T^{4\ell} < 70 \text{ GeV}$
Bin C	$70 \text{ GeV} < p_T^{miss} < 120 \text{ GeV}, p_T^{4\ell} > 70 \text{ GeV}$
Opposite-Flavor Channel	W-candidate leptons are different flavor
Signal Regions - Cut Based	
Bin 1	$m_{T2} > 25 \text{ GeV}, 0 \text{ GeV} < m_{\ell\ell}^W cands < 40 \text{ GeV}$
Bin 2	$m_{T2} > 25 \text{ GeV}, 40 \text{ GeV} < m_{\ell\ell}^W cands < 60 \text{ GeV}$
Bin 3	$m_{T2} > 25 { m GeV}, 60 { m GeV} < m^W_{\ell\ell} cands < 100 { m GeV}$
Bin 4	$m_{\ell\ell}^W cands > 100 { m ~GeV}$

- Training region selection is a subset of the full cut-based selection
- Training region selection is shown in purple
 - Note: no additional cuts applied for opposite-flavor channel
- Cut-based SRs are a combination of purple and black
 - I.e. preselection + channel specific selection

Yields after TR selection

		Summary			Composition of N_{total}					
	N _{total}	NonResonant WWZ	ZHWWZ	ZZ	ttZ	Higgs	WZ	Other		
Opp Flav Yield	27.3601 ± 0.5570	9.2928 ± 0.0169	7.933 ± 0.0202	20.487 ± 0.110	4.6626 ± 0.1180	1.5297 ± 0.4641	0.5747 ± 0.2592	0.1058 ± 0.0406		
Opp Flav Entries	45517	386138	562626	39470	5743	146	6	152		
Same Flav Yield	681.024 ± 1.117	8.5219 ± 0.0162	7.9725 ± 0.0202	671.271 ± 0.617	4.3152 ± 0.1136	5.2241 ± 0.9202	0.1066 ± 0.0755	0.1073 ± 0.0404		
Same Flav Entries	1660574	354713	566117	1654879	5316	227	2	150		

Table 24: Yields in training region for all processes.

- ZZ and ttZ are the only backgrounds used in training
 - Other backgrounds are limited by low statistics

Training+Testing samples

- 4 BDTs are trained using TMVA
 - \circ W candidate leptons are same flavor (ee/µµ) or opposite flavor (eµ)
 - WWZ vs Backgrounds (ZZ + ttZ)
 - ZH→WWZ vs Backgrounds (ZZ + ttZ)
- Training+Testing samples obtained by splitting full MC samples in half
 - Alternate putting events into training+testing samples when looping over events
- Full list of samples shown below (includes full Run 2 MC)

Process	Sample Names (NanoAOD v9)
WWZ	WWZJetsTo4L2Nu_4F_TuneCP5_13TeV-amcatnlo-pythia8_RunIISummer20UL1(6/7/8)*
ZH→WWZ	GluGluZH_HToWWTo2L2Nu_M-125_TuneCP5_13TeV-powheg-pythia8_RunIISummer20UL1(6/7/8)* HZJ_HToWWTo2L2Nu_ZTo2L_M-125_TuneCP5_13TeV-powheg-jhugen727-pythia8_RunIISummer20UL1(6/7/8)*
Backgrounds	ZZT04L_TuneCP5_13TeV_powheg_pythia8_RunIISummer20UL1(6/7/8)* ZZT02Q2L_mllmin4p0_TuneCP5_13TeV-amcatnloFXFX-pythia8_RunIISummer20UL1(6/7/8)* ZZT02L2Nu_TuneCP5_13TeV_powheg_pythia8_RunIISummer20UL1(6/7/8)* GluGluToContinToZZT0(2e2mu/2e2tau/2mu2tau/4e/4mu/4tau)_TuneCP5_13TeV-mcfm701-pythia8_RunIISummer20UL1(6/7/8)* TTZT0LL_M-1t010_TuneCP5_13TeV-amcatnlo-pythia8_RunIISummer20UL1(6/7/8)* TTZT0LLNuNu_M-10_TuneCP5_13TeV-amcatnlo-pythia8_RunIISummer20UL1(6/7/8)* TTZT0LLNuNu_M-10_TuneCP5_13TeV-amcatnlo-pythia8_RunIISummer20UL1(6/7/8)*

Splitting Cross Check

The table below shows the yields for the training and testing datasets

Sample	ole SF Training S		SF Testing Ratio (SF)		DF Testing	Ratio (DF)
WWZ	4.25206 ± 0.011483	4.25563 ± 0.0114843	0.99916	4.63711 ± 0.011984	4.63956 ± 0.011984	0.99947
ZH	4.00546 ± 0.014288	7.30354 ± 0.018344	0.54843	3.98529 ± 0.014279	7.31073 ± 0.018378	0.54513
Σ(ZZ,ttZ)	336.588 ± 0.445	336.658 ± 0.445	0.99979	12.54460 ± 0.11383	12.60440 ± 0.11382	0.99526

Note: ZH is not split $1/1 \rightarrow$ Performed some checks, still unsure why this is happening (however this really doesn't matter too much for the interpretation of results)

WWZ and Backgrounds have very similar statistics for training + testing datsets

BDT Input Variables

	Input variables for 4-lepton MVA
Variable	Brief Description
$m_{ll}^{W cands}$	Invariant mass of the W-lepton candidates
M_{T2}	Analogue of m_T for two semi-invisibly decaying particles
p_T^{miss}	Missing Transverse Energy (PuppiMET)
p_T^{4l}	Transverse momentum of the 4-lepton system
p_T^{Z1}	p_T of leading Z-candidate lepton
p_T^{Z2}	p_T of subleading Z-candidate lepton
p_T^{W1}	p_T of leading W-candidate lepton
p_T^{W2}	p_T of subleading W-candidate lepton
$\sum_{T} p_T$	Scalar sum of transverse energy in event
$\sum_{lep,MET}^{lep,MET,jet} p_T$	Scalar sum of leptonic and missing transverse energy in event
$\Delta R(l^{Z1}, l^{Z2})$	Solid angle (in $\eta - \phi$ coordinates) difference between Z-candidate leptons
$\Delta R(l^{W1}, l^{W2})$	Solid angle (in $\eta - \phi$ coordinates) difference between W-candidate leptons
$\Delta R(WW, Z)$	Solid angle (in $\eta - \phi$ coordinates) difference between W candidate lepton system and Z boson
$\Delta \phi(WW, p_T^{miss})$	Angular separation between WW system and p_T^{miss}
$\Delta \phi(Z, p_T^{miss})$	Angular separation between Z boson and p_T^{miss}
$\Delta \phi(WWZ, p_T^{miss})$	Angular separation between the 4-lepton system and p_T^{miss}

Table 15: Input variables for 4-lepton Boosted Decision Tree.

BDT Input Variables - Opposite Flavor

All distributions normalized to 1!

WWZ train

WWZ test

Bkgd train

Bkgd test

120

300

350

400

140

160

WWZ train

WWZ test

ZH train

ZH test

Bkgd train

Bkgd test

180 200 m_{T2} [GeV]

450 500 m, [GeV]

ZH train

ZH test

BDT Input Variables - Opposite Flavor (cont.)

9

BDT Input Variables - Opposite Flavor (cont.)

ZH train

160

160

180 200 p^{W2}_T [GeV]

180 200 p²²₇ [GeV]

BDT Input Variables - Opposite Flavor (cont.)

Variable Rankings - Opposite Flavor

- Good variables
 - $\circ \quad \mathbf{m}_{\rm II}, \, \mathbf{m}_{\rm T2}, \, \mathbf{dR}(\mathbf{I}^{\rm W1}, \mathbf{I}^{\rm W2})$
- Minor variables \rightarrow vars we may want to drop eventually
 - \circ Δφ(4I, MET), Δφ(Z,MET), STLepHad or STLep
- Bad variables \rightarrow vars that may cause problems (i.e. bad data/MC) $_{\circ}$

BDT Input Variables - Same Flavor

BDT Input Variables - Same Flavor (cont.)

BDT Input Variables - Same Flavor (cont.)

BDT Input Variables - Same Flavor (cont.)

Variable Rankings - Same Flavor

- Good variables
 - \circ MET, m_{T2}, p_T^{4I}
- Minor variables \rightarrow may want to drop these eventually
- Bad variables \rightarrow prone to data/MC mismodelling
 - o m_{II}

Validation Check - Opposite Flavor

WWZ MVA Score

Good shape agreement between training and testing datasets

Note: Background distribution has low stats compared to WWZ and ZH

Validation Check - Opposite Flavor (cont.)

ZH MVA Score

Good shape agreement between training and testing datasets

Note: Background distribution has low stats compared to WWZ and ZH

Validation Check - Same Flavor

WWZ MVA Score

Validation Check - Same Flavor (cont.)

ZH MVA Score

KS Test - Opposite Flavor

ZH BDT

WWZ BDT

→Don't seem to have overtraining

KS Test - Same Flavor

KS test seems to suggest overtraining \rightarrow Not obvious visually

Merging of Testing+Training Events

- Can we merge testing+training?
 - Without overtraining, we can evaluate the MVA score for <u>all</u> events
 - If there is no bias towards the training dataset, then re-using the training data during evaluation will not bias the results
- Since there is no obvious overtraining, I suggest evaluating all (training+testing) events rather than scaling the testing dataset

BDT MVA Distributions - Opposite Flavor

ZH MVA score (Opposite Flavor Channel)

Comparing MVA distributions for signals and backgrounds \rightarrow Looks reasonable

BDT MVA Distributions - Same Flavor

ZH MVA score (Same Flavor Channel)

Again, this looks reasonable

BDT MVA outputs - 2D scatter plot (Opposite Flavor)

- Can identify regions that are "ZH-like" and "WWZ-like"
 - Top right: ZH-like
 - Bottom right:
 WWZ-like

BDT MVA outputs - 2D scatter plot (Same Flavor)

ZH MVA score

- Can identify 2 regions where signal tends to live
 - ZH: high ZH score and high WWZ score
 - WWZ: High WWZ score and (somewhat) uniform in ZH score

Binning for SRs

- Binning was done "by eye"
 - Idea: define regions that isolate the individual signals
 - Easier said than done \rightarrow Considerable overlap between signals in 2D plots
- For each channel, define 2 SRs for each signal
 - 2 signals x 2 bins x 2 channels = 8 bins total
 - For each signal, 1 bin is "pure" in the signal while the other tends to be "mixed"

SR	SF SR 1	SF SR 2	SF SR 3	SF SR 4	OF SR 1	OF SR 2	OF SR 3	OF SR 4
WWZ Score	> 0.9	> 0.9	∈ (0.7,0.9)	∈ (0.6,0.7)	> 0.7	∈ (0.4,0.7)	> 0.5	∈ (-0.2,0.5)
ZH Score	> 0.8	∈ (-0.6,0.8)	> 0.85	> 0.85	< -0.3	< -0.6	> 0.7	> 0.7

(Binning shown on 2D plots on next 2 slides)

2D Signal Regions - Opposite Flavor

2D Signal Regions - Same Flavor

SR Yields - BDT Analysis

Arrows show 2 most sensitive bins in each channel

SR Yields - BDT Analysis (cont.)

	\overline{SR}	2 110	Summary				Composition of N_{total}				
Most consitivo	Bins	N _{total}	NonResonant WWZ	ZHWWZ	S/\sqrt{B}	ZZ	ttZ	Higgs	WZ	Other	
hins (OF channel)	OF SR 1	0.93 ± 0.17	2.03 ± 0.01	0.032 ± 0.002	2.15	0.082 ± 0.007	0.51 ± 0.04	0.16 ± 0.10	0.18 ± 0.13	0.0001 ± 0.004	
	OF SR 2	1.06 ± 0.12	1.87 ± 0.01	0.044 ± 0.002	1.86	0.16 ± 0.01	0.94 ± 0.06	-0.046 ± 0.101	0 ± 0	0.011 ± 0.005	
	OF SR 3	0.11 ± 0.02	0.312 ± 0.003	1.135 ± 0.007	4.34	0.022 ± 0.004	0.090 ± 0.015	-0.002 ± 0.018	0 ± 0	0.001 ± 0.001	
	> OF SR 4	0.56 ± 0.12	0.380 ± 0.004	2.62 ± 0.01	4.00	0.147 ± 0.009	0.215 ± 0.023	0.145 ± 0.099	0.056 ± 0.056	0.001 ± 0.005	
	SF SR 1	2.29 ± 0.27	1.09 ± 0.01	1.63 ± 0.01	1.80	0.93 ± 0.02	0.58 ± 0.04	0.78 ± 0.26	0 ± 0	0.009 ± 0.007	
	SF SR 2	3.15 ± 0.09	2.82 ± 0.01	0.114 ± 0.003	1.65	1.44 ± 0.03	1.61 ± 0.07	0.055 ± 0.037	0 ± 0	0.043 ± 0.037	
	SF SR 3	3.08 ± 0.26	0.354 ± 0.003	1.34 ± 0.01	0.97	2.52 ± 0.04	0.19 ± 0.02	0.37 ± 0.25	0 ± 0	0.003 ± 0.006	
Most sensitive	SF SR 4	0.61 ± 0.09	0.049 ± 0.001	0.274 ± 0.004	0.41	0.49 ± 0.02	0.032 ± 0.008	0.079 ± 0.087	0 ± 0	0.000 ± 0.002	
bins (SF channel)											

Table 23: Yields in BDT signal regions

	SR	Summary								
	Bins	N _{total}	NonResonant WWZ	ZHWWZ	S/\sqrt{B}	ZZ	ttZ	Higgs	WZ	Other
	OF Bin 1	1.33 ± 0.21	0.65 ± 0.01	3.05 ± 0.01	3.21	0.62 ± 0.02	0.32 ± 0.03	0.27 ± 0.19	0.11 ± 0.08	0.01 ± 0.01
Most sensitive	OF Bin 2	0.96 ± 0.11	0.74 ± 0.01	1.35 ± 0.01	2.13	0.62 ± 0.02	0.38 ± 0.03	-0.06 ± 0.10	0 ± 0	0.01 ± 0.01
bins (OF channel)	OF Bin 3	1.39 ± 0.22	1.48 ± 0.01	0.35 ± 0.01	1.55	0.39 ± 0.02	0.83 ± 0.05	-0.06 ± 0.16	0.18 ± 0.13	0.04 ± 0.04
	OF Bin 4	3.60 ± 0.23	5.14 ± 0.01	0.15 ± 0.01	2.79	0.50 ± 0.02	2.51 ± 0.09	0.45 ± 0.17	0.12 ± 0.12	0.02 ± 0.01
	SF Bin 1	3.25 ± 0.22	2.33 ± 0.01	0.95 ± 0.01	1.82	1.32 ± 0.03	1.32 ± 0.06	0.61 ± 0.21	0 ± 0	0.01 ± 0.01
Most sensitive	SF Bin 2	6.18 ± 0.36	1.97 ± 0.01	1.52 ± 0.01	1.40	4.58 ± 0.05	1.12 ± 0.06	0.42 ± 0.35	0 ± 0	0.06 ± 0.04
bins (SF channel)	SF Bin 3	3.15 ± 0.18	0.57 ± 0.01	0.68 ± 0.01	0.70	2.78 ± 0.04	0.27 ± 0.03	0.10 ± 0.17	0 ± 0	0.01 ± 0.01

Table 25: Yields in Cut-Based SR bins (as of September 1st, 2023)

Based on S/sqrt(B) considerations (purple), MVA bins are more sensitive!

Combine Result - MVA vs Cut-Based

- Take the MC-based yields from the previous slide
 - Use these to calculate the significance (Z) for the MVA and cut-based analyses

 Z_{MVA} = 4.81 σ $Z_{cut-based}$ = 4.56 σ

 \rightarrow MVA outperforms cut-based analysis (as expected)

This was achieved without "optimal" binning

BDT hyperparameters were also not "fully-optimized"

Thus.... there is room for improvement on this result

Improvements for the BDT

- Replace some "bad" training variables with variables that provide better discrimination
 - Also, figure out what these "better" variables are
- Tweak the BDT hyperparameters to find a combination that strikes a balance between (lack of) overtraining and discrimination power
- Figure out how to improve the 2D binning for the MVA SRs

To do

- Samples to add:
 - VVV (WWW, WZZ, ZZZ)
 - o tWZ
- Reduce skim size
 - What progress has been made?
- Implement lepton SFs
- Background Estimation
 - $\circ \quad \text{ZZ, ttZ, WZ} \rightarrow \text{3 lepton + 1 fake}$

BDT Hyperparameters (TMVA)

- - N_{trees} = 400 Number of trees in the forest
- MinNodeSize = 5%
 - Minimum fraction of the training data used to construct individual nodes Ο
- Boost Type: Gradient Boost
 - Algorithm used for boosting Ο
- Shrinkage = 0.1
 - Learning rate for the Gradient Boost Algorithm Ο
- MaxDepth = 2
 - Maximum depth of decision tree 0
- SeparationType = SDivSqrtSPlusB
 - Node splitting is done by computing s/sqrt(s+b) and comparing to the nominal value for "signal" or "background"
- Ignore Negative Weights in Training