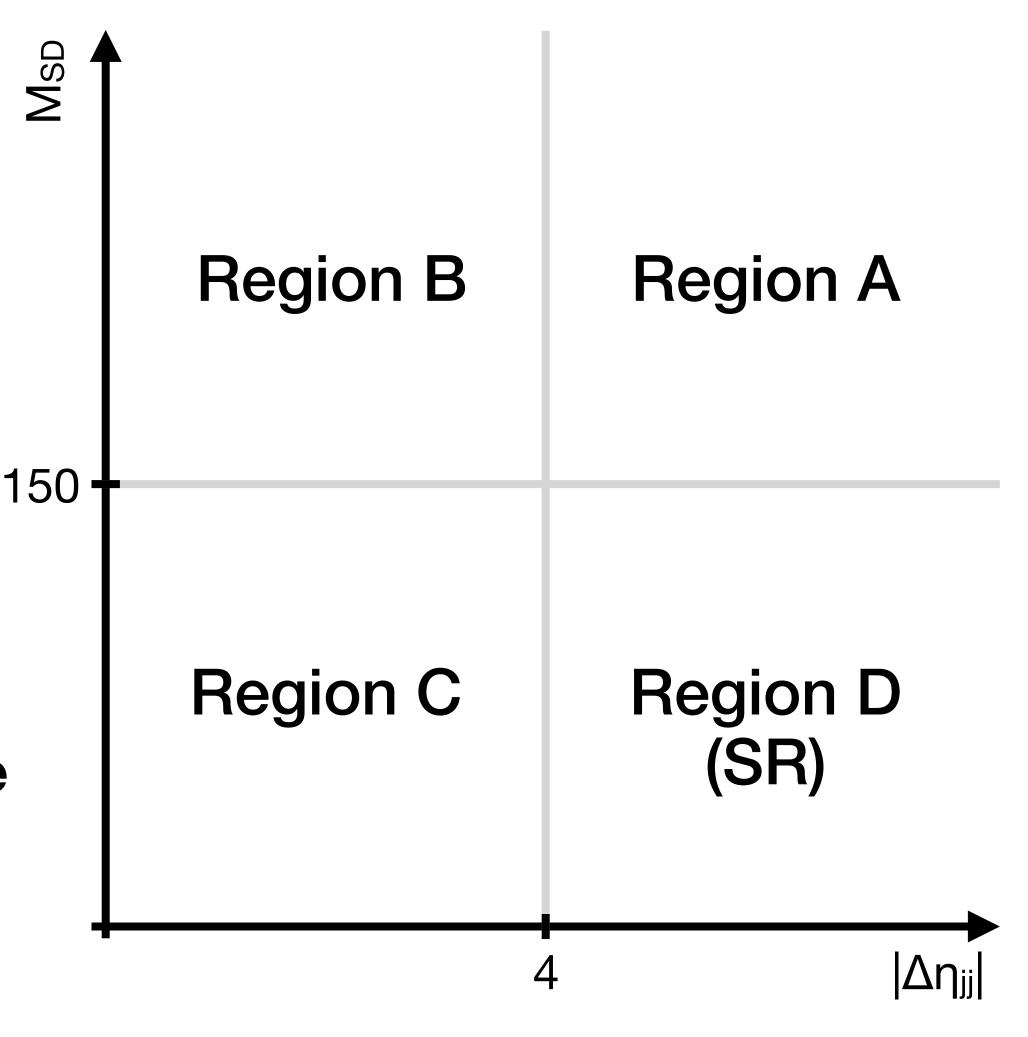
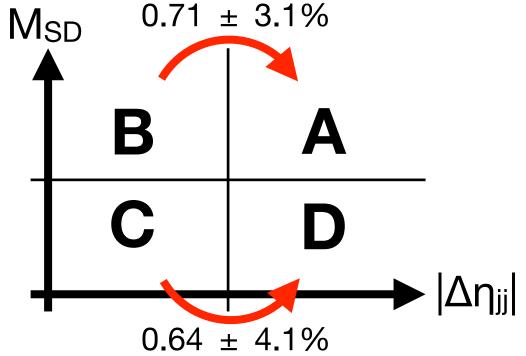
VBS WH Analysis


Proposed ABCD correction June 16th, 2023

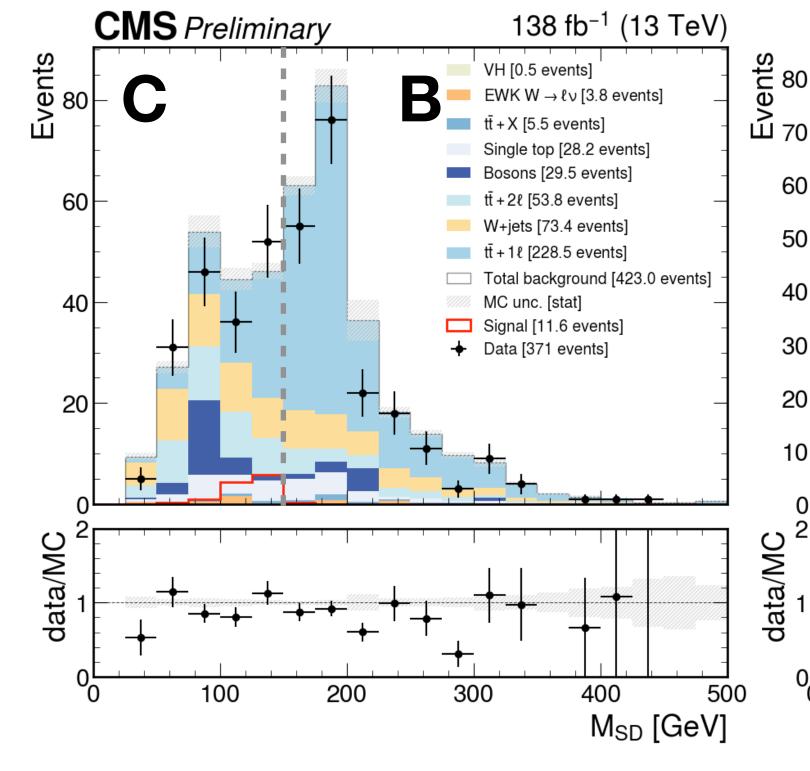
P. Chang, L. Giannini, J. Guiang, F. Würthwein

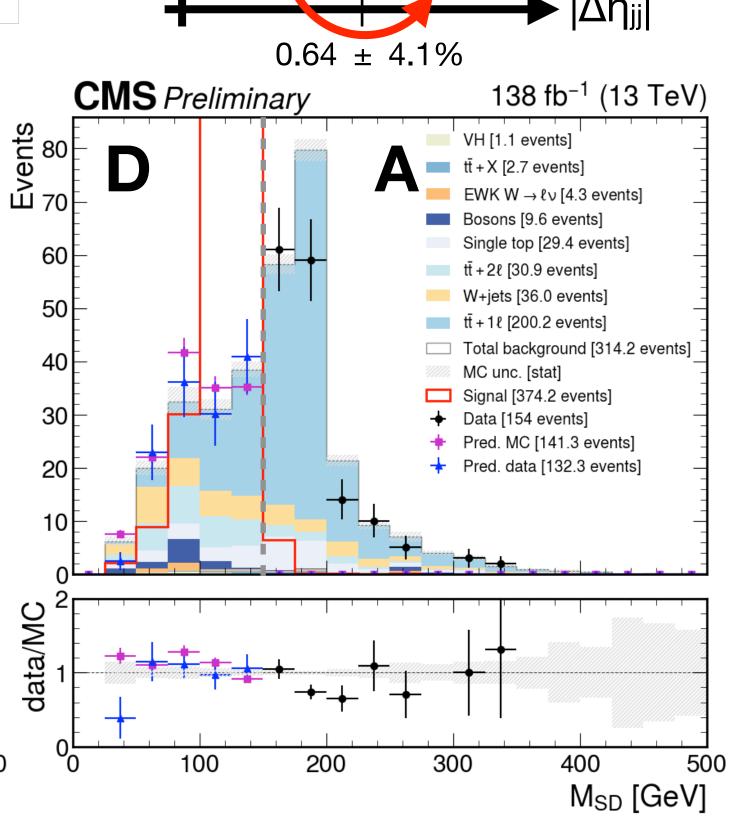
Overview

- We were asked to do two closure tests in data:
 - ABCD in a ParticleNet Xbb sideband*
 - ABCD in Regions A+B (i.e. M_{SD} ≥ 150 GeV)
- We were also asked to make correlation plots
- The results are presented here
- We find that the method is not perfect, but with some correction, it provides a reasonable background estimate that is precise enough for our analysis (S/B ~ 360/100)



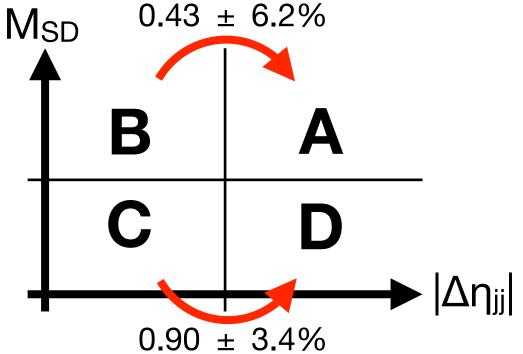
Recall: Original ABCD Method


Preselection AND $M_{jj} > 600$ GeV AND $S_T > 900$ GeV AND PNet Xbb > 0.9


Cut	Region	Total Bkg.	Sig. $(\lambda_{WZ} = -1)$	Data
$ \Delta \eta_{jj} > 4$ AND $M_{SD} \ge 150$ GeV	A	173.0 ± 3.3	6.9 ± 3.3	142 ± 11.9
$ \Delta \eta_{jj} \le 4 \text{ AND M}_{SD} \ge 150 \text{ GeV}$	В	241.9 ± 5.8	0.3 ± 5.8	201 ± 14.2
$ \Delta \eta_{jj} \le 4 \text{ AND M}_{SD} < 150 \text{ GeV}$	С	181.1 ± 4.4	11.6 ± 4.4	170 ± 13.0
$ \Delta \eta_{jj} > 4$ AND M _{SD} < 150 GeV (SR)	D	116.4 ± 3.8	366.3 ± 3.8	

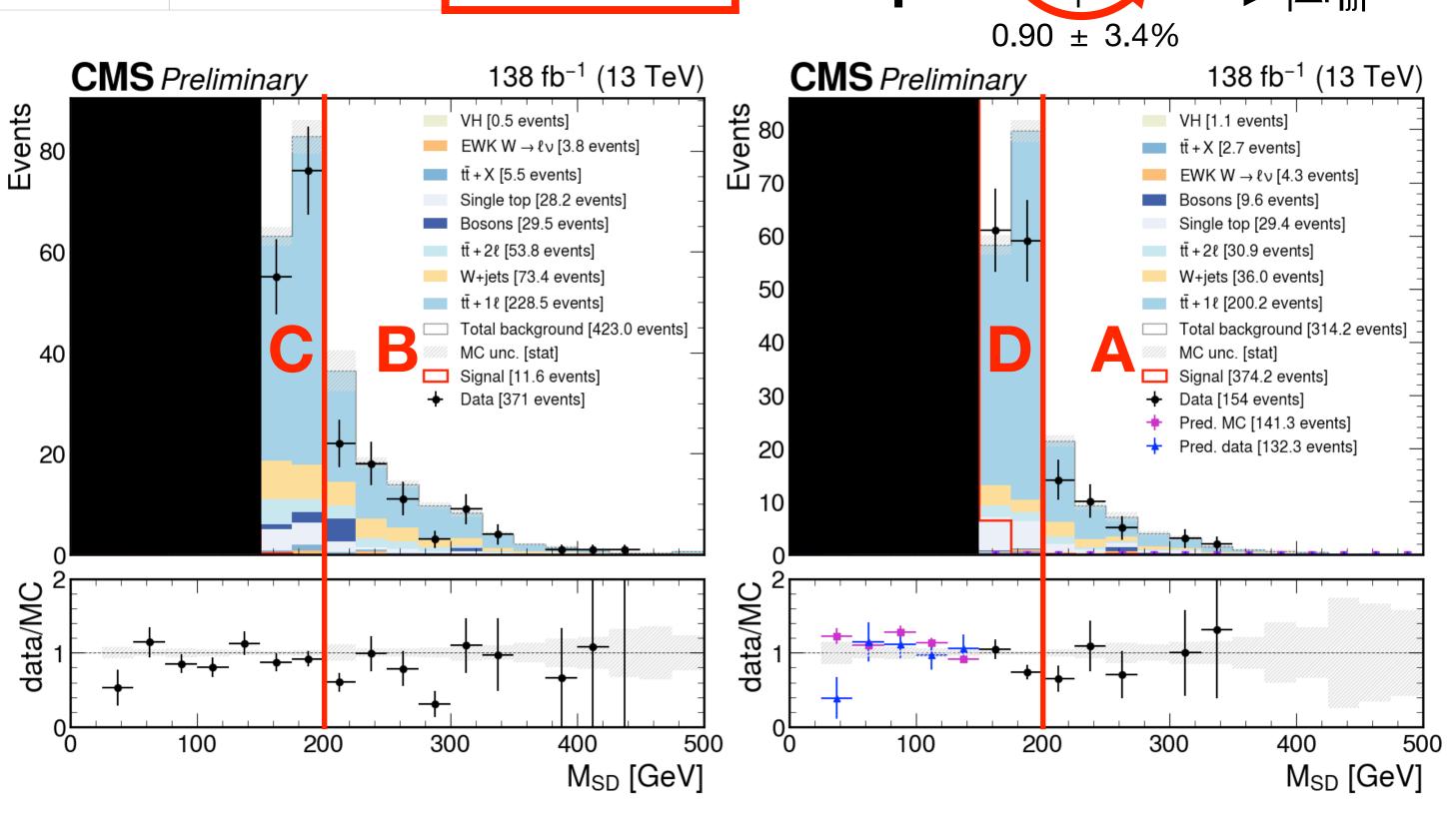
- Data an MC agree reasonably well in B, C, D
 - Only use yields in final limit
- Data and MC transfer factors agree

$$\frac{C_{MC}}{D_{MC}} = 0.71 \pm 3.1\%$$
 $\frac{C_{data}}{D_{data}} = 0.71 \pm 11.0\%$



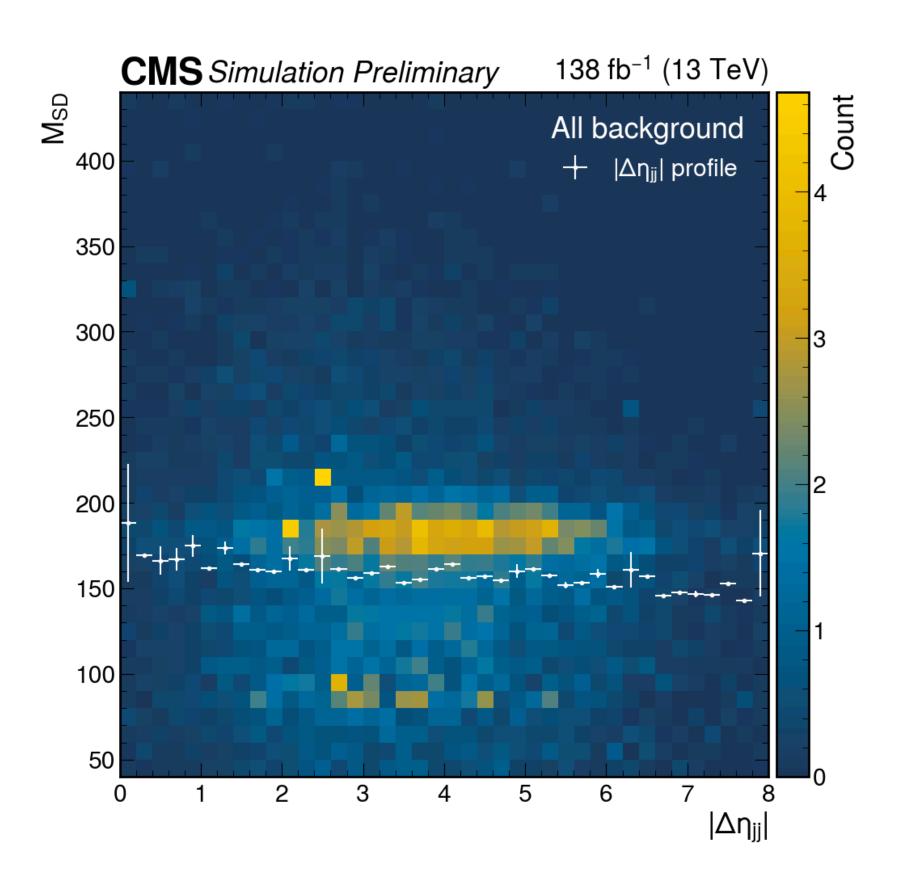
ABCD in MsD Sideband

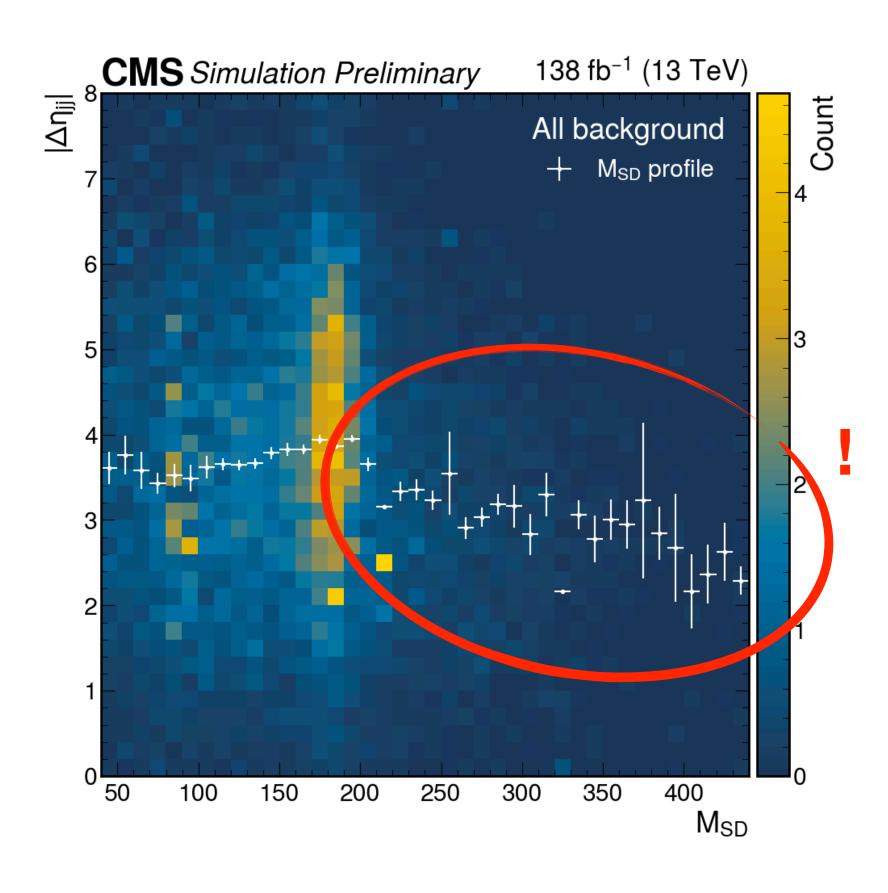
Preselection AND M_{jj} > 600 GeV AND S_T > 900 GeV AND PNet Xbb > 0.9 AND M_{SD} ≥ 150 GeV


Cut	Region	Total Bkg.	Sig. $(\lambda_{WZ} = -1)$	Data
$ \Delta \eta_{jj} > 4 \text{ AND M}_{SD} \ge 200 \text{ GeV}$	A	41.8 ± 1.7	0.3 ± 1.7	28 ± 5.3
$ \Delta \eta_{jj} \le 4 \text{ AND } M_{SD} \in \ge 200 \text{ GeV}$	В	96.1 ± 4.4	0.0 ± 4.4	70 ± 8.4
$ \Delta \eta_{jj} \le 4 \text{ AND M}_{SD} < 200 \text{ GeV}$	С	145.9 ± 3.8	0.2 ± 3.8	131 ± 11.5
$ \Delta\eta_{jj} > 4$ AND $M_{SD} < 200$ GeV ("SR")	D	131.2 ± 2.8	6.6 ± 2.8	114 ± 10.7

Closure in data is very bad:

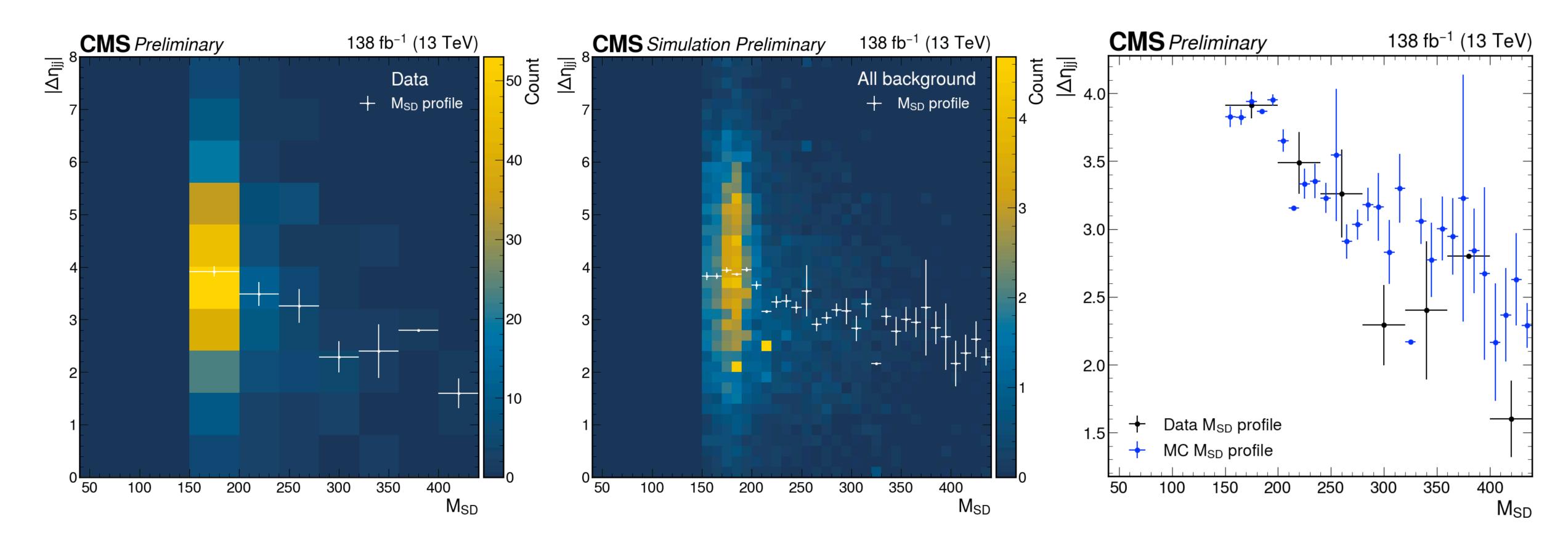
$$D_{data}^{pred} = C_{data} \times \frac{A_{data}}{B_{data}} = 52.4 \pm 12.6$$


- If M_{SD} and $\Delta \eta_{jj}$ are decorrelated, ABCD should work here
- Are they correlated? (next slide)



^{*}Table errors = $\sqrt{(\Sigma_i w_i^2)}$ for MC, $\sqrt{(count)}$ for data

2D Correlation Plots



- Left plot looks OK, but correlation is clear in right plot
- M_{SD} and $|\Delta\eta_{jj}|$ have some correlation (but "cancel out" for ABCD as defined)

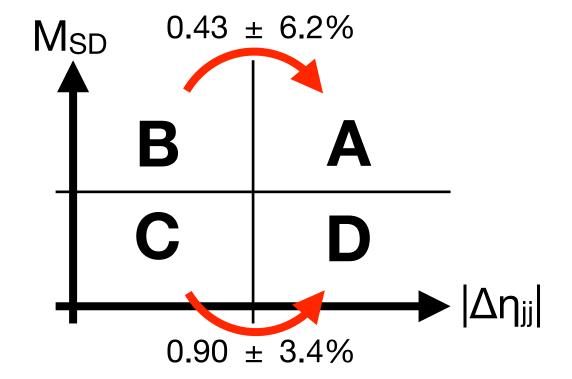
2D Correlation Plots: Data vs. MC

- Trend in 1D profile is ~consistent between data and MC
- Correlation is well-modeled in MC → a correction can be taken from MC (next slide)

Proposed Correction

Before:
$$D_{data}^{pred} = C_{data} \times \frac{A_{data}}{B_{data}}$$

After:
$$D_{data}^{pred} = C_{data} \times \frac{A_{data}}{B_{data}} \times \left(\frac{D_{MC}/C_{MC}}{A_{MC}/B_{MC}}\right)$$


- We propose a correction factor taken from MC:
 - We know A/B ≠ D/C (hence our 11% systematic)
 - We compute a factor from MC that scales A/B to D/C (i.e. trivial closure in MC)
 - We apply this factor to A/B in data
- Next: we test this procedure in the M_{SD} sideband

With Correction: ABCD in M_{SD} Sideband

Preselection AND M_{jj} > 600 GeV AND S_T > 900 GeV AND PNet Xbb > 0.9 AND M_{SD} ≥ 150 GeV

Cut	Region	Total Bkg.	Sig. $(\lambda_{WZ} = -1)$	Data
$ \Delta \eta_{jj} > 4$ AND $M_{SD} \ge 200$ GeV	A	41.8 ± 1.7	0.3 ± 1.7	28 ± 5.3
$ \Delta\eta_{jj} \le 4 \text{ AND M}_{SD} \in \ge 200 \text{ GeV}$	В	96.1 ± 4.4	0.0 ± 4.4	70 ± 8.4
$ \Delta \eta_{jj} \le 4 \text{ AND M}_{SD} < 200 \text{ GeV}$	С	145.9 ± 3.8	0.2 ± 3.8	131 ± 11.5
$ \Delta\eta_{jj} > 4$ AND M _{SD} < 200 GeV ("SR")	D	131.2 ± 2.8	6.6 ± 2.8	114 ± 10.7

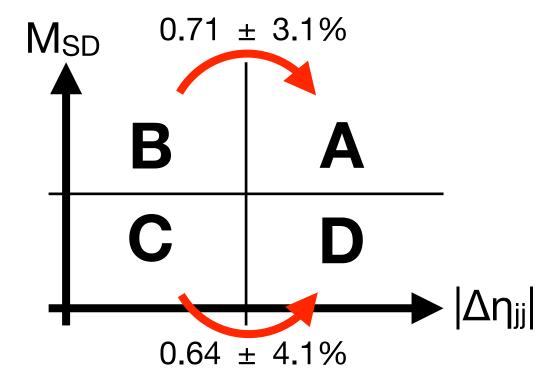
- Good closure in data after applying transfer factor proposed on previous slide
- This confirms correlation is sufficiently wellmodeled by MC
- We now apply this correction to the original ABCD

$$D_{data}^{pred} = C_{data} \times \frac{A_{data}}{B_{data}} \times \left(\frac{D_{MC}/C_{MC}}{A_{MC}/B_{MC}}\right)$$

$$= 131 \times \frac{28}{70} \times \left(\frac{0.899}{0.435}\right)$$

$$= 131 \times 0.400 \times \left(\frac{0.899}{0.435}\right)$$

$$= 108.4$$


^{*}Table errors = $\sqrt{(\Sigma_i w_i^2)}$ for MC, $\sqrt{(count)}$ for data

With Correction: Original ABCD Method

Preselection AND $M_{jj} > 600$ GeV AND $S_T > 900$ GeV AND PNet Xbb > 0.9

Cut	Region	Total Bkg.	Sig. $(\lambda_{WZ} = -1)$	Data *
$ \Delta \eta_{jj} > 4$ AND $M_{SD} \ge 150$ GeV	Α	173.0 ± 3.3	6.9 ± 3.3	142 ± 11.9
$ \Delta \eta_{jj} \le 4 \text{ AND M}_{SD} \ge 150 \text{ GeV}$	В	241.9 ± 5.8	0.3 ± 5.8	201 ± 14.2
$ \Delta \eta_{jj} \le 4 \text{ AND M}_{SD} < 150 \text{ GeV}$	С	181.1 ± 4.4	11.6 ± 4.4	170 ± 13.0
$ \Delta \eta_{jj} > 4$ AND M _{SD} < 150 GeV (SR)	D	116.4 ± 3.8	366.3 ± 3.8	

- Only slightly different predicted background yield
 - Consistent within 1σ data statistical error
- Keep systematic uncertainties from before (backup)

Pred. bkg. before: 120.1±16.07±15.30 stat. syst.

Pred. bkg. after: 108.0 ± 14.45 ± 13.76 stat. syst.

$$D_{data}^{pred} = C_{data} \times \frac{A_{data}}{B_{data}} \times \left(\frac{D_{MC}/C_{MC}}{A_{MC}/B_{MC}}\right)$$

$$= 170 \times \frac{142}{201} \times \left(\frac{0.643}{0.715}\right)$$

$$= 170 \times 0.706 \times \left(\cdot \quad 0.899\right)$$

$$= 108.0$$

^{*}Table errors = $\sqrt{(\Sigma_i w_i^2)}$ for MC, $\sqrt{(count)}$ for data

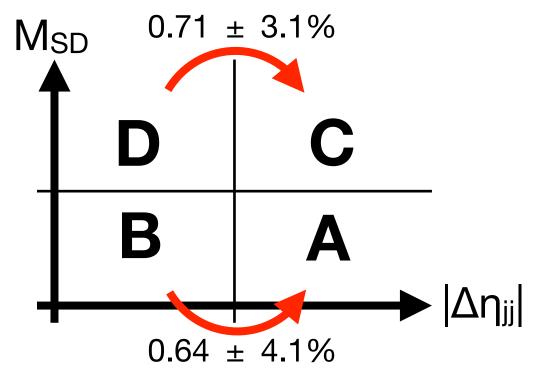
Summary

- After producing the correlation plots requested by L2s, we see that our ABCD variables are correlated
 - However, this correlation "cancels out" and we get good closure in MC
 - Correlation is also well-modeled in data
- We propose a correction factor from MC:

$$D_{data}^{pred} = C_{data} \times \frac{A_{data}}{B_{data}} \times \left(\frac{D_{MC}/C_{MC}}{A_{MC}/B_{MC}}\right)$$

- We confirm that this is valid in M_{SD} sideband (i.e. now closes in data)
- We apply this correction factor to our original ABCD, get only a slightly different prediction, and keep systematics from before

Backup



ABCD Background Estimation

Preselection AND $M_{jj} > 600$ GeV AND $S_T > 900$ GeV AND PNet Xbb > 0.9

Cut	Region	Bkg. (wgt)	Bkg. Err.*	Sig. (wgt)	Sig. Err.*	Data	Data Err.*
$ \Delta \eta_{jj} > 4$ AND $M_{SD} \ge 150$ GeV	A	172.97	3.25	6.92	3.25	142	11.92
$ \Delta \eta_{jj} \le 4 \text{ AND M}_{SD} \ge 150 \text{ GeV}$	В	241.93	5.83	0.27	5.83	201	14.18
$ \Delta \eta_{jj} \le 4 \text{ AND M}_{SD} < 150 \text{ GeV}$	С	181.10	4.40	11.62	4.40	170	13.04
$ \Delta \eta_{jj} > 4$ AND $M_{SD} < 150$ GeV (SR)	D	116.41	3.84	366.30	3.84		

$$D_{MC}^{pred}=rac{A_{MC}}{B_{MC}} imes C_{MC}=$$
 129.48

• Errors: 10% (syst.), 13% (stat.) Over-predicted
$$D_{MC}^{pred} = \frac{A_{MC}}{B_{MC}} \times C_{MC} = 129.48 \quad \epsilon_{syst} = \left| 1 - \frac{D_{MC}^{pred}}{D_{MC}} \right| = \left| 1 - \frac{129.5}{116.4} \right| = 11\% \oplus 6\% = 13\%$$

$$D_{data}^{pred} = \frac{A_{data}}{B_{data}} \times C_{data} = 120.10$$

$$\epsilon_{stat} = \sqrt{\left(\frac{\sqrt{A_{data}}}{A_{data}}\right)^2 + \left(\frac{\sqrt{B_{data}}}{B_{data}}\right)^2 + \left(\frac{\sqrt{C_{data}}}{C_{data}}\right)^2}$$

$$= \sqrt{\frac{1}{A_{data}} + \frac{1}{B_{data}} + \frac{1}{C_{data}}} = 13\%$$

Predicted SR Yield: 120.1 ± 16.07 ± 15.30

stat.

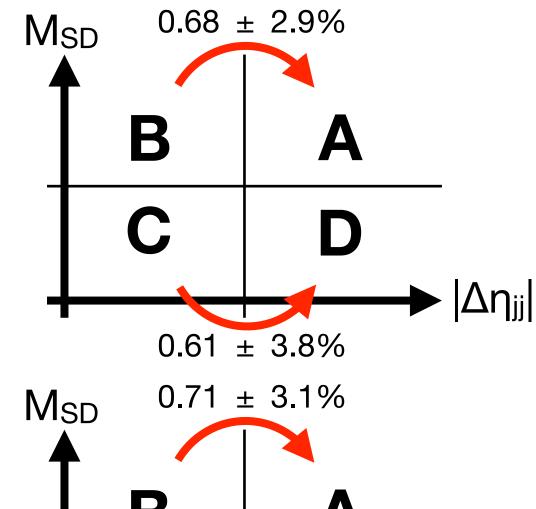
syst.

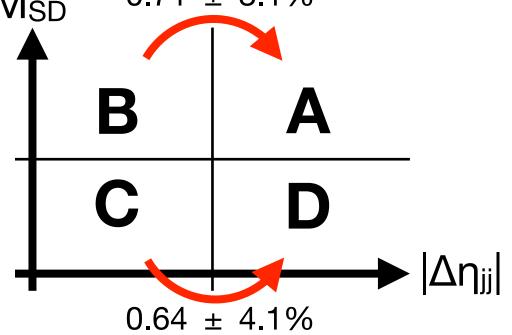
Bkg comp. syst.

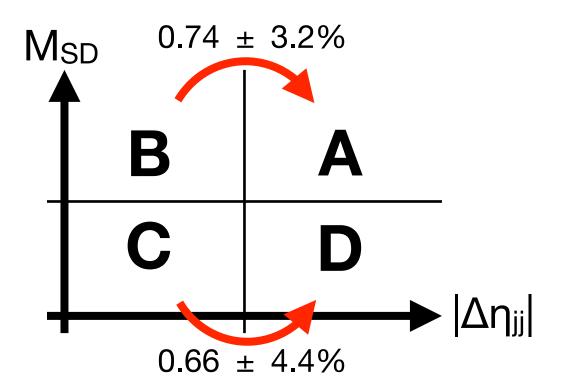
^{*}err = $\sqrt{(\Sigma_i w_i^2)}$ for MC, $\sqrt{(count)}$ for data

SR1 ABCD: W+jets Composition

Preselection AND $M_{jj} > 600$ GeV AND $S_T > 900$ GeV AND PNet Xbb > 0.9 (WJets x 2)


Cut	Region	Bkg. (wgt)	Bkg. Err.*	Sig. (wgt)	Sig. Err.*	Data	Data Err.*
$ \Delta \eta_{jj} > 4$ AND $M_{SD} \ge 150$ GeV	A	184.26	3.48	6.92	0.40	142	11.92
$ \Delta \eta_{jj} \le 4 \text{ AND M}_{SD} \ge 150 \text{ GeV}$	В	272.50	5.98	0.27	0.08	201	14.18
$ \Delta \eta_{jj} \le 4 \text{ AND M}_{SD} < 150 \text{ GeV}$	С	223.95	4.72	11.62	0.52	170	13.04
$ \Delta \eta_{jj} > 4$ AND M _{SD} < 150 GeV (SR)	D	137.64	4.42	366.30	2.92	_	


Preselection AND $M_{jj} > 600$ GeV AND $S_T > 900$ GeV AND PNet Xbb > 0.9


Cut	Region	Bkg. (wgt)	Bkg. Err.*	Sig. (wgt)	Sig. Err.*	Data	Data Err.*
$ \Delta \eta_{jj} > 4$ AND $M_{SD} \ge 150$ GeV	A	172.97	3.25	6.92	3.25	142	11.92
$ \Delta \eta_{jj} \le 4 \text{ AND M}_{SD} \ge 150 \text{ GeV}$	В	241.93	5.83	0.27	5.83	201	14.18
$ \Delta \eta_{jj} \le 4 \text{ AND M}_{SD} < 150 \text{ GeV}$	С	181.10	4.40	11.62	4.40	170	13.04
$ \Delta \eta_{jj} > 4$ AND M _{SD} < 150 GeV (SR)	D	116.41	3.84	366.30	3.84	_	

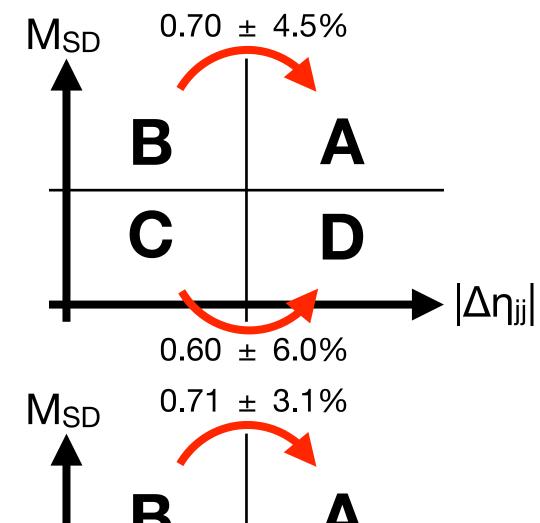
Preselection AND $M_{jj} > 600$ GeV AND $S_T > 900$ GeV AND PNet Xbb > 0.9 (WJets x 0.5)

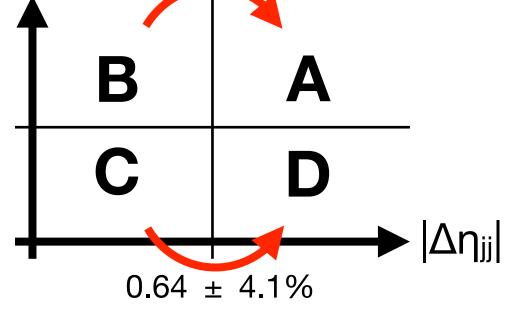
,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,			•	•			
Cut	Region	Bkg. (wgt)	Bkg. Err.*	Sig. (wgt)	Sig. Err.*	Data	Data Err.*
Δη _{jj} > 4 AND M _{SD} ≥ 150 GeV	A	167.32	3.19	6.92	0.40	142	11.92
$ \Delta \eta_{jj} \le 4 \text{ AND M}_{SD} \ge 150 \text{ GeV}$	В	226.65	5.79	0.27	80.0	201	14.18
$ \Delta \eta_{jj} \le 4 \text{ AND M}_{SD} < 150 \text{ GeV}$	С	159.67	4.32	11.62	0.52	170	13.04
$ \Delta \eta_{jj} > 4$ AND M _{SD} < 150 GeV (SR)	D	105.79	3.68	366.30	2.92		

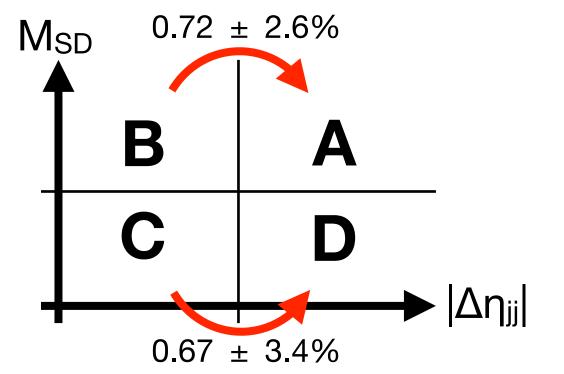
^{*}err = $\sqrt{(\Sigma_i w_i^2)}$ for MC, $\sqrt{(count)}$ for data

SR1 ABCD: Bosons Composition

Preselection AND $M_{jj} > 600$ GeV AND $S_T > 900$ GeV AND PNet Xbb > 0.9 (Bosons x 2)


Cut	Region	Bkg. (wgt)	Bkg. Err.*	Sig. (wgt)	Sig. Err.*	Data	Data Err.*
$ \Delta \eta_{jj} > 4$ AND $M_{SD} \ge 150$ GeV	A	173.96	3.46	6.92	0.40	142	11.92
$ \Delta \eta_{jj} \le 4 \text{ AND M}_{SD} \ge 150 \text{ GeV}$	В	249.87	9.99	0.27	0.08	201	14.18
$ \Delta \eta_{jj} \le 4 \text{ AND M}_{SD} < 150 \text{ GeV}$	С	202.63	7.17	11.62	0.52	170	13.04
$ \Delta \eta_{jj} > 4$ AND M _{SD} < 150 GeV (SR)	D	122.39	5.97	366.30	2.92		<u>—</u>


Preselection AND $M_{jj} > 600$ GeV AND $S_T > 900$ GeV AND PNet Xbb > 0.9


Cut	Region	Bkg. (wgt)	Bkg. Err.*	Sig. (wgt)	Sig. Err.*	Data	Data Err.*
$ \Delta \eta_{jj} > 4$ AND $M_{SD} \ge 150$ GeV	A	172.97	3.25	6.92	3.25	142	11.92
$ \Delta \eta_{jj} \le 4 \text{ AND M}_{SD} \ge 150 \text{ GeV}$	В	241.93	5.83	0.27	5.83	201	14.18
$ \Delta \eta_{jj} \le 4 \text{ AND M}_{SD} < 150 \text{ GeV}$	C	181.10	4.40	11.62	4.40	170	13.04
$ \Delta \eta_{jj} > 4$ AND M _{SD} < 150 GeV (SR)	D	116.41	3.84	366.30	3.84		

Preselection AND $M_{jj} > 600$ GeV AND $S_T > 900$ GeV AND PNet Xbb > 0.9 (Bosons x 0.5)

,			•	•			
Cut	Region	Bkg. (wgt)	Bkg. Err.*	Sig. (wgt)	Sig. Err.*	Data	Data Err.*
$ \Delta \eta_{jj} > 4$ AND M _{SD} ≥ 150 GeV	A	172.47	3.20	6.92	0.40	142	11.92
$ \Delta \eta_{jj} \le 4 \text{ AND M}_{SD} \ge 150 \text{ GeV}$	В	237.97	4.18	0.27	80.0	201	14.18
$ \Delta \eta_{jj} \le 4 \text{ AND M}_{SD} < 150 \text{ GeV}$	С	170.33	3.38	11.62	0.52	170	13.04
$ \Delta \eta_{jj} > 4$ AND M _{SD} < 150 GeV (SR)	D	113.42	3.08	366.30	2.92		

^{*}err = $\sqrt{(\Sigma_i w_i^2)}$ for MC, $\sqrt{(count)}$ for data