
H

V

CMS Weekly General Meeting

1

VBS WH Inaugural Talk
P. Chang3, L. Giannini2, J. Guiang2, A. Levin1, Q. Li1,  

S. Qian1, F. Würthwein2

1Peking University 

2University of California, San Diego 
3University of Florida



2

Documentation

+ =

AN-2022/156 
(boosted)

AN-2022/065 
(resolved)

HIG-23-007

PubTalk:  
CADI: 
TWiki: 

https://cms-pub-talk.web.cern.ch/c/hig/hig-23-007  
https://cms.cern.ch/iCMS/analysisadmin/cadilines?line=HIG-23-007 
https://twiki.cern.ch/twiki/bin/viewauth/CMS/ElectroweakWHjjQA

https://cms-pub-talk.web.cern.ch/c/hig/hig-23-007
https://cms.cern.ch/iCMS/analysisadmin/cadilines?line=HIG-23-007
https://twiki.cern.ch/twiki/bin/viewauth/CMS/ElectroweakWHjjQA


3

Overview
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• Targeting VBS WH


• In particular: H→bb̅ and W→ℓν


• Boosted analysis (UCSD + UFL)


• H→bb̅ reconstructed as a single AK8 jet


• Targeting an exclusion of BSM κW/κZ 
values


• Resolved analysis (PKU)


• H→bb̅ reconstructed as two AK4 jets


• Targeting an observation of SM VBS WH
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• VBS WH→ℓνbb̅ signature:


• VBS quarks → 2 jets w/ large Δηjj, Mjj


• H→bb̅


• Most favorable BR


• Boosted: 1 fat jet tagged w/ ParticleNet


• Resolved: 2 jets tagged w/ DeepJet


• One and only one lepton 

• Used for trigger/cleaner signature

Signal Signature
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Boosted Analysis
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• CMS has already pinned |κW| = 1 and |κZ| = 1


• Within an uncertainty of 10%


• Effectively restricted to κV2, so only know magnitude


• SM predicts that they are the same sign


• i.e. we expect λWZ = κW/κZ = +1


• We have thus far not confirmed this prediction


• Fun fact: best CMS limit* slightly prefers λWZ = -1


• Need a process that is linear in κV

Target Higgs Couplings From Nature

*https://link.springer.com/article/10.1140/epjc/s10052-019-6909-y

https://doi.org/10.1038/s41586-022-04892-x
https://link.springer.com/article/10.1140/epjc/s10052-019-6909-y
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• Targeting VBS WH


• σ = 0.075 pb (λWZ = +1)


• σ = 0.433 pb (λWZ = -1)


• Linear in κV 

• We present an analysis that can strongly 
exclude the λWZ < 0 scenario


• Optimized for λWZ = -1

Enter: VBS WH
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1. Leverage High Level Triggers (HLTs) for 
most basic selection


• We use the single lepton triggers


2. Construct a Signal Region (SR) with a 
large signal-to-background ratio


• Roughly 370 sig. vs. 120 bkg.


3. Implement a data-driven estimation of 
the background in the SR


4. Perform a simple counting experiment

Analysis Strategy
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Typically, the observables f and g for the ABCD method
are chosen to be simple, physically well-motivated features
such as mass, HT , and missing ET . Their independence is
always ensured manually, e.g., by choosing features that
are known physically to have little correlation or by trial
and error.2 In some cases, independence can be guaranteed
by using completely orthogonal sources of information,
such as measurements from different subdetectors or
properties of independently produced particles. However,
more often than not, the features are not 100% independent
and one has to apply a residual correction derived from
simulations. Ideally, this simulation correction has small
uncertainties—either because the effect itself is small, or
because the correction is robust. But such corrections,
together with the fact that simple kinematic features are
typically not optimal discriminants of signal versus back-
ground, generally limit the effectiveness of the ABCD
method and the sensitivity of the analysis in question. (See
[10], however, for a proposal for extending the ABCD
method using higher-order information when the features
are not independent.)
In this paper, we will explore the systematic application

of deep learning to the ABCD method. Deep learning has
already demonstrated impressive success in finding observ-
ables that are effective at discrimination [11–65] and that
are uncorrelated with other observables [66–81]. Building
on previous success, we will aim to use deep learning to
automate the selection of features used in the ABCD
method, simultaneously optimizing their discrimination
power while ensuring their independence.
The main tool we will use in automating the ABCD

method will be a recently proposed method for training

decorrelated deep neural networks [73]. This method uses a
well-known statistical measure of nonlinear dependence
known as distance correlation (DisCo) [82–85]. DisCo is a
function of two random variables (or samples thereof) and
is zero if and only if the variables are statistically inde-
pendent; otherwise it is positive. Therefore it can be added
as a regularization term in the loss function of a neural
network to encourage the neural network output to be
decorrelated against any other feature. In [73] it was shown
that DisCo decorrelation achieves state-of-the-art decorre-
lation performance while being easier and more stable to
train than approaches based on adversarial methods.
Therefore it is ideally suited to automating the ABCD
method.
We will propose two new ideas for automating the

ABCD method, which we will call single DisCo and
double DisCo, respectively. In single DisCo, we will train
a single neural network classifier on signal and background
and use DisCo regularization to force it to be independent
in the background of a second, fixed feature (such as
invariant mass). In double DisCo, we will train two neural
network classifiers and use DisCo regularization to force
them to be independent of one another.
We will study three examples to illustrate the effective-

ness of these methods. The first example is a simple
model where signal and background are drawn from
three-dimensional Gaussian distributions. Here the aim is
to understand many of the features of single and double
DisCo in a fully controlled environment. The second
example is boosted hadronic top tagging, where often
sideband interpolation in mass is employed. For the
ABCD method we treat a window selection on the mass
as a classifier variable. Thus we use the invariant mass as
the single DisCo fixed feature, and we then show how
double DisCo can improve on this by combining mass with
other information to produce more effective classification.
Finally, we examine a search that currently uses the
conventional ABCD method: the ATLAS paired dijet

FIG. 1. The ABCD method is used to estimate the background in region A as NA ¼ NBNC
ND

. It requires the signal to be relatively
localized in region A and the observables to be independent on background. The shaded planes (left) or lines (right) denote thresholds
which isolate the signal in region A.

2There are examples where f or g are chosen automatically, as
is the case when one of them is a neural network (see e.g.,
Ref. [9]). However, such analyses do not have an automated
procedure for ensuring that f and g are independent and the
departure from Eq. (1.1) can be significant.

KASIECZKA, NACHMAN, SCHWARTZ, and SHIH PHYS. REV. D 103, 035021 (2021)

035021-2

Diagram from G. Kasieczka et al.
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Data-Driven Background Extrapolation

• Signal region* (Region A):


• Mjj > 600 GeV & |Δηjj| > 4 & MSD < 150 GeV & ParticleNet Xbb > 0.9 & ST > 900 GeV


• Background is predominantly from tt+̅1ℓ production


• We use the ABCD (|Δηjj| vs. Mjj) method as above to estimate all bkg.
*Defined within Preselection region (detailed in backup)

150

4

Apred = B ×
C
D

https://doi.org/10.1103/PhysRevD.103.035021
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Data-Driven Background Extrapolation
A CB D

Region A

Apred
MC = B ×

CMC

DMC
= 129 events

Apred
data = B ×

Cdata

Ddata
= 120 events

Used for final prediction

Compared to actual MC 
yield ⇒ method closes well

|Δηjj|

MSD

A
B

C
D

Expected signal (λWZ = -1): 366±2.9
Predicted background:  120±16.1±15.3

stat. syst.
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Expected Results

Madgraph 
reweighting

κW = -1 
κZ = +1

Interpolated 
exclusion σ for 

each κW, κZ point

Strong exclusion of λWZ < 0 scenarios 
allowed by current limits

Expected signal (λWZ = -1): 366±2.9
Predicted background:  120±16.1±15.3

stat. syst.



Resolved Analysis
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1. Leverage High Level Triggers (HLTs) for 
most basic selection


• We use the single lepton triggers


2. Construct a Signal Region (SR) for final fit


• Train a BDT here to more efficiently 
select signal events


3. Construct a Control Region (CR) for MC 
validation and final fit


4. Perform two binned likelihood fits

Analysis Strategy
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• Preselection applied to both CR and SR


• SR defined in large Mjj and |Δηjj| region


• BDT trained here


• CR defined in low Mjj sideband


• Data/MC agreement validated for bkg.


• Both of these regions are used in the 
final fit

Signal and Control Regions

|Δηjj|

Mjj

2.5

100 500

SR

CR

Preselection: 
• Single lepton HLTs

• Basic object selections (VBS, H→bb̅ jets, 1 lepton)

• pT(W) = pT(ℓ) + MET > 35 GeV

• Mbb ∈ [50, 150] GeV

CR vs. SR topography:
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SR: BDT Training

• Aforementioned signal features (plus a few more) used as input variables


• Most important features: Mbb, Mjj, Nextra jets, pT, b (full feature ranking in backup)


• Low BDT score (< 0.8) distribution validated against data

Input features

Good performance ✓ Good agreement ✓

SR
|Δηjj|

Mjj
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CR: MC Validation CR
|Δηjj|

Mjj

Good agreement ✓

Take expected background 
from MC
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• Perform a binned likelihood fit on two distributions:


• CR divided into 4 Mjj bins (100 GeV wide)


• SR divided into 20 BDT score bins (0.05 wide)


• Expected significance:  0.49σ

Expected Results



Backup (boosted)
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 GC_72 = Coupling(name = 'GC_72', 
                  value = '(ee**2*complex(0,1)*vev)/(2.*sw**2)', 
                  value = '-((ee**2*complex(0,1)*vev)/(2.*sw**2))', 
                  order = {'QED':1})

models/sm/couplings.py

 
 V_52 = Vertex(name = 'V_52', 
               particles = [ P.W__minus__, P.W__plus__, P.H ], 
               color = [ '1' ], 
               lorentz = [ L.VVS1 ], 
               couplings = {(0,0):C.GC_72})

models/sm/vertices.py

W+

W-

H

 GC_81 = Coupling(name = 'GC_81', 
                  value = 'ee**2*complex(0,1)*vev + …’, 
                  value = '-(ee**2*complex(0,1)*vev + … )’, 
                  order = {'QED':1})

models/sm/couplings.py

 
 V_69 = Vertex(name = 'V_69', 
               particles = [ P.Z, P.Z, P.H ], 
               color = [ '1' ], 
               lorentz = [ L.VVS1 ], 
               couplings = {(0,0):C.GC_81})

models/sm/vertices.py

Z

Z
H

Only changed one line in SM Madgraph model!

BSM Signal Models
κW = -1 κZ = -1
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• Setting κW = -1 or κZ = -1 equivalently enhances cross section by a factor of 6


• These numbers are taken from MadGraph: generate p p > w h j j QCD=0


• Includes gen-level filters (e.g. jet pT > 10 GeV)


• Generated 10,000 events for each to obtain xsec value


• Optimizing for κW = -1 (kinematics are equivalent to κZ = -1)


• Generated 100k UL NanoAOD events for 2016 pre-VFP, 2016 post-VFP, 2017, and 2018

VBS WH Cross Sections
Model σ [pb]

κW = κZ = +1 (SM) 0.075
κW = -1, κZ = +1 0.433
κW = +1, κZ = -1 0.433

⨉6
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2016 CMS Result

https://arxiv.org/pdf/1809.10733.pdf

https://arxiv.org/pdf/1809.10733.pdf
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VBS Jets

• Mjj = invariant mass of VBS system, |Δηjj| = η1 - η2


• VBS signature for signal is clear: large Mjj & |Δηjj|
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H→bb Large-radius Jet

• MSD = “softdrop” mass of jet, ParticleNet Xbb = mass-decorrelated X→bb jet tagger


• Higgs peak + performant tagger gives strong signal separation
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• ST = pT(ℓ) + MET + pT(H→bb̅)


• i.e. transverse energy of W + H


• Captures boosted WH from λWZ = -1


• Large number of signal events in ST tail


• Background falls exponentially


• Signal is similarly boosted for most κW, κZ points 
where λWZ < 0

Boosted WH
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Preselection AND Mjj > 600 GeV AND ST > 900 GeV AND PNet Xbb > 0.9
Cut Region Bkg. (wgt) Bkg. Err.* Sig. (wgt) Sig. Err.* Data Data Err.*
|Δηjj| > 4 AND MSD ≥ 150 GeV D 172.97 3.25 6.92 0.40 142 11.92
|Δηjj| ≤ 4 AND MSD ≥ 150 GeV C 241.93 5.83 0.27 0.08 201 14.18
|Δηjj| ≤ 4 AND MSD < 150 GeV B 181.10 4.40 11.62 0.52 170 13.04
|Δηjj| > 4 AND MSD < 150 GeV (SR) A 116.41 3.84 366.30 2.92 — —

MSD

|Δηjj|

CD
B A

0.71 ± 3.1%

0.64 ± 4.1%

*err = √(Σiwi2) for MC, √(count) for data

ABCD Systematic Error

• Errors: 10% (syst.), 13% (stat.)

Dpred
MC =

AMC

BMC
× CMC = 129.48 ϵsyst = 1 −

Dpred
MC

DMC
= 1 −

Dpred
MC

DMC
= 13%

Dpred
data =

Adata

Bdata
× Cdata =

ϵstat = ( Adata

Adata )
2

+ ( Bdata

Bdata )
2

+ ( Cdata

Cdata )
2

=
1

Adata
+

1
Bdata

+
1

Cdata
= 13%

120.10

Predicted SR Yield:  120.1±16.07±15.30
stat. syst.

Over-predicted

129.5
116.4

Bkg comp. syst.  
(backup)

11% ⨁ =6%
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ABCD W+jets Composition

Preselection AND Mjj > 600 GeV AND ST > 900 GeV AND PNet Xbb > 0.9 (WJets x 0.5)
Cut Region Bkg. (wgt) Bkg. Err.* Sig. (wgt) Sig. Err.* Data Data Err.*
|Δηjj| > 4 AND MSD ≥ 150 GeV D 167.32 3.19 6.92 0.40 142 11.92
|Δηjj| ≤ 4 AND MSD ≥ 150 GeV C 226.65 5.79 0.27 0.08 201 14.18
|Δηjj| ≤ 4 AND MSD < 150 GeV B 159.67 4.32 11.62 0.52 170 13.04
|Δηjj| > 4 AND MSD < 150 GeV (SR) A 105.79 3.68 366.30 2.92 — —

MSD

|Δηjj|

CD
B A

0.74 ± 3.2%

0.66 ± 4.4%

Preselection AND Mjj > 600 GeV AND ST > 900 GeV AND PNet Xbb > 0.9 (WJets x 2)
Cut Region Bkg. (wgt) Bkg. Err.* Sig. (wgt) Sig. Err.* Data Data Err.*
|Δηjj| > 4 AND MSD ≥ 150 GeV D 184.26 3.48 6.92 0.40 142 11.92
|Δηjj| ≤ 4 AND MSD ≥ 150 GeV C 272.50 5.98 0.27 0.08 201 14.18
|Δηjj| ≤ 4 AND MSD < 150 GeV B 223.95 4.72 11.62 0.52 170 13.04
|Δηjj| > 4 AND MSD < 150 GeV (SR) A 137.64 4.42 366.30 2.92 — —

MSD

|Δηjj|

CD
B A

0.68 ± 2.9%

0.61 ± 3.8%

Preselection AND Mjj > 600 GeV AND ST > 900 GeV AND PNet Xbb > 0.9
Cut Region Bkg. (wgt) Bkg. Err.* Sig. (wgt) Sig. Err.* Data Data Err.*
|Δηjj| > 4 AND MSD ≥ 150 GeV D 172.97 3.25 6.92 0.40 142 11.92
|Δηjj| ≤ 4 AND MSD ≥ 150 GeV C 241.93 5.83 0.27 0.08 201 14.18
|Δηjj| ≤ 4 AND MSD < 150 GeV B 181.10 4.40 11.62 0.52 170 13.04
|Δηjj| > 4 AND MSD < 150 GeV (SR) A 116.41 3.84 366.30 2.92 — —

MSD

|Δηjj|

CD
B A

0.71 ± 3.1%

0.64 ± 4.1%

*err = √(Σiwi2) for MC, √(count) for data 5.4% systematic
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ABCD Bosons Composition

Preselection AND Mjj > 600 GeV AND ST > 900 GeV AND PNet Xbb > 0.9 (Bosons x 0.5)
Cut Region Bkg. (wgt) Bkg. Err.* Sig. (wgt) Sig. Err.* Data Data Err.*
|Δηjj| > 4 AND MSD ≥ 150 GeV D 172.47 3.20 6.92 0.40 142 11.92
|Δηjj| ≤ 4 AND MSD ≥ 150 GeV C 237.97 4.18 0.27 0.08 201 14.18
|Δηjj| ≤ 4 AND MSD < 150 GeV B 170.33 3.38 11.62 0.52 170 13.04
|Δηjj| > 4 AND MSD < 150 GeV (SR) A 113.42 3.08 366.30 2.92 — —

MSD

|Δηjj|

CD
B A

0.72 ± 2.6%

0.67 ± 3.4%

Preselection AND Mjj > 600 GeV AND ST > 900 GeV AND PNet Xbb > 0.9 (Bosons x 2)
Cut Region Bkg. (wgt) Bkg. Err.* Sig. (wgt) Sig. Err.* Data Data Err.*
|Δηjj| > 4 AND MSD ≥ 150 GeV D 173.96 3.46 6.92 0.40 142 11.92
|Δηjj| ≤ 4 AND MSD ≥ 150 GeV C 249.87 9.99 0.27 0.08 201 14.18
|Δηjj| ≤ 4 AND MSD < 150 GeV B 202.63 7.17 11.62 0.52 170 13.04
|Δηjj| > 4 AND MSD < 150 GeV (SR) A 122.39 5.97 366.30 2.92 — —

MSD

|Δηjj|

CD
B A

0.70 ± 4.5%

0.60 ± 6.0%

Preselection AND Mjj > 600 GeV AND ST > 900 GeV AND PNet Xbb > 0.9
Cut Region Bkg. (wgt) Bkg. Err.* Sig. (wgt) Sig. Err.* Data Data Err.*
|Δηjj| > 4 AND MSD ≥ 150 GeV D 172.97 3.25 6.92 0.40 142 11.92
|Δηjj| ≤ 4 AND MSD ≥ 150 GeV C 241.93 5.83 0.27 0.08 201 14.18
|Δηjj| ≤ 4 AND MSD < 150 GeV B 181.10 4.40 11.62 0.52 170 13.04
|Δηjj| > 4 AND MSD < 150 GeV (SR) A 116.41 3.84 366.30 2.92 — —

MSD

|Δηjj|

CD
B A

0.71 ± 3.1%

0.64 ± 4.1%

*err = √(Σiwi2) for MC, √(count) for data 2.6% systematic
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• For most systematics:


1. Get nominal yield in SR


2. Get yield in SR after applying up/down variation


• If scale factor: first divide each event weight by 
nominal value


3. Systematic = largest % difference in yield

yield = y =
N

∑
i=1

Wi

where Wi = ∏
j

ωi

Step 1

yvar =
N

∑
i=1

Wi ×
ωvar

ωnom

Step 2

δvar = 1 −
yvar

y
syst. = max (δup, δdown)

Step 3

Signal Systematics
Systematic Size
PDF variations 2.2%
μF scale 17.5%
Parton shower ISR weights 0.6%
Parton shower FSR weights 1.7%
Pileup reweighting 0.2%
Pileup jet ID 0.8%
L1 pre-fire corrections 0.9%
Single-electron HLT scale factors 0.7%
Single-muon HLT scale factors 0.1%
Simulation stat. unc. 0.8%
Electron ID scale factors 1.4%
Muon ID scale factors 0.1%
Electron reco. scale factors 0.3%
Muon iso. scale factors 0.0%
ParticleNet Xbb scale factors 1.3%
DeepJet b-tagging scale factors 0.2%
MET unc. 0.1%
Jet energy scale 7.0%
Jet energy resolution 0.4%
Luminosity 1.6%
H→bb̅ BR 1.3%
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• For (Hessian) PDF systematics:


1. Get overall variation/inclusive ratio for each of the 100 PDF variations


2. Get nominal yield in SR


3. Get yield in SR after applying a given variation


4. Systematic = % difference in yield for each variation added in quadrature

yield = y =
N

∑
i=1

Wi

where Wi = ∏
j

ωj

Step 2

yvar =
N

∑
i=1

Wi ×
ωvar

i

Rvar

Step 3

δvar = 1 −
yvar

y

syst. = [∑
var

δ2
var]

1/2

Step 4

Signal Systematics: PDF Variations

Step 1

Rvar =
∑N

i=0 ωvar
i

∑N
i=0 ωgen

i
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Detailed Results
• Assessed rigorous set of systematics on signal 

simulation (backup)


• Maximum-likelihood fit for bkg-only hypothesis


• “Observed” yield is artificially set to be equal 
to the predicted bkg. yield


• Used CMS statistical tool*


• We expect to exclude λWZ = -1 at 9σ 

• Waiting for internal approval to “unblind” 
analysis (i.e. look at the data in the SR)

*https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/

Expected signal (λWZ = -1): 366±2.9
Predicted background:  120±16.1±15.3

stat. syst.

https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/
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Detailed Results (cont.)
• Used MadGraph reweighing to scan many κW, 

κZ values


• Interpolated exclusion limits plotted on z-axis


• Current best limits on |κV| are plotted as capped 
“error bars” (represent 1D limits, not 2D errors)


• |κW| = 1.02 ± 0.08, |κZ| = 1.04 ± 0.07


• Contours show σ = 1, 2, 5 exclusion boundaries


• This shows we can exclude λWZ < 0 when 
considered alongside current best limits
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• Generated 10k events for various κW values


• Comparing kinematics at LHE level


• Not much difference across a fairly large 
range of κW values


• ⇒ Acceptance ~consistent for κW = -1 ± ϵ

Other λWZ values
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• Generated two signal samples:


• λWZ ≤ 0 sample


• Reweighted around (κW = -1, κZ = +1)


• λWZ > 0 sample


• Reweighted around (κW = +1, κZ = +1)


• Used PKU reweighting model


• Full Run 2 samples


• 100k events per NanoAODv9 “year”

λWZ Scan
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New Signal Samples: Validation
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HiggsCombine Settings

imax 1 number of channels
jmax 1 number of backgrounds
kmax 19 number of nuisance parameters
------------------------------------------
bin                       bin1
observation                128
------------------------------------------
bin                       bin1        bin1
process              VBSWH_mkW    TotalBkg
process                      0           1
rate                    413.34      127.92
------------------------------------------
abcd_syst     lnN            -       1.084
abcd_stat     lnN            -       1.133
pdf_vars      lnN        1.022           -
muF_scale     lnN        1.178           -
isr_weights   lnN        1.001           -
fsr_weights   lnN        1.015           -
pu_rwgt       lnN        1.002           -
L1_prefire    lnN        1.010           -
hlt_sfs       lnN        1.008           -
mc_stat       lnN        1.022           -
lep_id        lnN        1.015           -
elec_reco     lnN        1.003           -
muon_iso      lnN        1.000           -
xbb_sfs       lnN        1.057           -
btag_sfs      lnN        1.003           -
met_unc       lnN        1.003           -
jes           lnN        1.066           -
jer           lnN        1.008           -
lumi          lnN        1.025           -

H
combine -M MultiDimFit -d scan_kW_X_kZ_Y.root  
    -m 125 -t -1  
    --expectSignal=0  
    --setParameters r_VBSWH_mKW=0  
    --setParameterRanges r_VBSWH_mKW=0.0,2.0  
    --saveNLL  
    --algo grid  
    --points 101  
    --rMin 0 --rMax 5  
    --alignEdges 1

scan_kW_X_kZ_Y.dat

Repeat for each point κW = X, κZ = Y
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Take σ exclusion of r = 1 Infer σ exclusion of r = 1

Extrapolated Points

x
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• Bins centered on scanned κW, κZ points


• Exclusion limit plotted on z-axis


• Contour roughly shows σ = 2 boundary


• Simplistically derived by Matplotlib


• Black x’s taken directly from HiggsCombine plot


• Red ★’s inferred from plot

Collected Results
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• Bins centered on scanned κW, κZ points


• Exclusion limit plotted on z-axis


• Contour roughly shows σ = 2 boundary


• Simplistically derived by Matplotlib


• Discontinuities do not affect contours


• Caused by some failure in the reweighting


• Cross sections are reweighted properly, 
acceptance is not


• Smoothed out via interpolation

Collected Results



Backup (resolved)
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BDT Input Variables
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BDT Input Variables (cont.)
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BDT Training

Learning Rate 0.01
Max Depth 6

Early stopping rounds 1

BDT settings

• Used 90/10 train/test split


• Set weights = abs(weights), but affects < 1% of events

Weight metric: the number of times that feature is used to split the data 
Gain metric: the average increase in the objective function for all splits based on that feature


