VBS VVH All-Hadronic Switching to XVqq January 30th, 2023

P. Chang, L. Giannini, J. Guiang, Y. Xiang, E. Zenhom

Cut-based

Yields scaled to lumi $\times \sigma$, rounded for readability

Cut	QCD	TTbarJets	TotalBkg	Eff.*	VBSVVH ($C_{2V} = 2$)	Eff.*	QCD	TTbarJets	TotalBkg	Eff.*	VBSVVH (C $_{2V}$ = 2)
Skim	136,950K	748K	137,698K	—	175		136,950K	748K	137,698K	—	175
HLT + MET Filters	88,614K	574K	89,188K	35%	168	4%	88,614K	574K	89,188K	35%	168
At least 3 fat jets	686K	16K	701K	99%	35	79%	686K	16K	701K	99%	35
Object selection	290K	10K	300K	57%	20	42%	290K	10K	300K	57%	20
M _{jj} > 500 GeV	87K	3.1K	90K	70%	18	12%	87K	3.1K	90K	70%	18
Δη _{jj} > 500 GeV	81K	2.9K	84K	6%	18	0%	81K	2.9K	84K	6%	18
H→bb̄ fat jet PNet Xbb > 0.9	4K	948	4.9K	94%	12	35%	4K	947	4.9K	94%	12
V→qq fat jet PNet <mark>X</mark> > 0.9	21	17	38	99%	5	61%	13	9	22	100%	4
S⊤ > 1300 GeV	10	11	21	45%	4	5%	7	5	12	42%	3
M _{SD} (H→b̄b fat jet) < 150 GeV	3	6	8	61%	4	2%	1	2	4	70%	3
M _{SD} (V→qq fat jet) < 120 GeV	0	2	2	75%	4	11%	0	1	1	64%	3

- Left: using ParticleNet XVqq = (Xbb + Xcc + Xqq)/(Xbb + Xcc + Xqq + QCD)
- Right: using ParticleNet XWqq = (Xcc + Xqq)/(Xcc + Xqq + QCD)
- Not optimized, so maybe BDT makes better use of the XVqq score

Yields scaled to lumi $\times \sigma$, rounded for readability

BDT

Cut	QCD	TTbarJets	TotalBkg	Eff.*	VBSVVH ($C_{2V} = 3$)	Eff.
BDT Preselection	607	151	758		10	

- First apply BDT preselection:
 - S_T > 1300 GeV
 AND H→bb̄ fat jet PNet Xbb > 0.5
 AND V→qq fat jet PNet X > 0.5
 AND M_{SD}(H→bb̄ fat jet) < 150 GeV
 AND M_{SD}(V→qq fat jet) < 120 GeV
- Train BDT using XGBoost with the input features listed on the right
 - 40/60 test/train split
 - Hyperparameters listed in backup

Yields scaled to lumi $\times \sigma$, rounded for readability

Object	Features
H→bb̄ fat jet	 ParticleNet Xbb score p_T M_{SD}
V→qq fat jets	 ParticleNet X score pT MsD
Other	 MET N_{jets} (AK4)

Using XVqq

	,	iotal Baokgio	C/ D	
wgt.	raw	wgt.	raw	3/√₽
9.24	17063	253.16	947	0.58
7.46	13779	3.14	35	4.21
6.94	12800	1.43	20	5.80
6.78	12518	1.36	19	5.80
6.62	12227	1.08	15	6.36
6.45	11906	1.03	14	6.36
6.24	11524	0.56	9	8.35
6.00	11081	0.49	8	8.57
	wgt. 9.24 7.46 6.94 6.78 6.62 6.45 6.24 6.00	wgt.raw9.24170637.46137796.94128006.78125186.62122276.45119066.24115246.0011081	wgt.rawwgt.9.2417063253.167.46137793.146.94128001.436.78125181.366.62122271.086.45119061.036.24115240.566.00110810.49	wgt.rawwgt.raw9.2417063253.169477.46137793.14356.94128001.43206.78125181.36196.62122271.08156.45119061.03146.24115240.5696.00110810.498

Difference is not huge, but slightly better using XVqq

BDT

Using XWqq

Selection	Signal (C ₂	v = 2)	Total Background		
Selection	wgt.	raw	wgt.	raw	
M _{ij} > 500 and Δη _{ij} > 3	8.51	15488	178.97	718	
$M_{jj} > 500$ and $ \Delta \eta_{jj} > 3$ and BDT > 0.80	6.68	12131	1.75	20	
$M_{jj} > 500 \text{ and } \Delta \eta_{jj} > 3 \text{ and BDT} > 0.85$	6.11	11046	0.93	12	
$M_{jj} > 500 \text{ and } \Delta \eta_{jj} > 3 \text{ and BDT} > 0.86$	5.95	10770	0.79	10	
$M_{jj} > 500 \text{ and } \Delta \eta_{jj} > 3 \text{ and BDT } > 0.87$	5.75	10402	0.64	8	
M_{jj} > 500 and $ \Delta \eta_{jj} $ > 3 and BDT > 0.88	5.56	10052	0.57	7	
$M_{jj} > 500 \text{ and } \Delta \eta_{jj} > 3 \text{ and BDT} > 0.89$	5.33	9645	0.53	6	
M_{ij} > 500 and $ \Delta \eta_{ij} $ > 3 and BDT > 0.90	5.06	9165	0.46	5	

Summary

- Now select \geq 3 fat jets (rather than == 3 fat jets)
- Compared XVqq vs. XWqq •
 - Cut-based is worse with XVqq (but not optimized)
 - BDT-based is better with XVqq

Backup

All-Hadronic VBS VVH

- Targeting the following final states:
 - WWH → qq qq qq bb
 - $ZZH \rightarrow qq qq qq b\bar{b}$
 - WZH → qq qq qq bb
- Sensitive to C_{2V} , C_3 , and C_V in principle
- BSM signature:
 - W/Z/H jets with large p⊤
 - VBS jets with large $\Delta \eta_{jj}$, M_{jj}

All-Hadronic VBS VVH

- One interesting N_{jets} vs. N_{fatjets} channel:
 - 3 AK8 fat jets, ≥ 2 AK4 jets (right)
 - 2 AK8 fat jets, \geq 4 AK4 jets
 - 2 AK8 fat jets, 3 AK4 jets
- Practically zero signal with N_{fatjets} > 3 (backup)
- From previous studies, N_{fatjets} == 1 channel not worthwhile pursuing right now

Analysis Skim

Cut	QCD	TTbarJets	TotalBkg	Eff.*	VBSVVH ($C_{2V} = 2$)	Eff.
Skim	136,950	DK 748K	137,698K		175	
	Object	Select	ion			
	Leptons (µ, e)	== 0 ve	eto*			
	Fat Jets	≥ 2 w/ p _T > AND η AND mass > AND M _{SD} > AND fat jet	300 GeV < 2.5 > 50 GeV 40 GeV t ID > 0			
	Jets	≥ 2 w/ p⊤ > AND passes t AND ΔR(jet, fa	20 GeV tight jet ID at jet) > 0.8			
	Other	≥ 1 pair of AK4 jets AND Δη	w/ M _{jj} > 500 (_{jj} > 3	GeV		
	L	*Using the ttH leptor	ו ID			

					110		544401
	QCD	TTbarJets		TotalBkg	Eff.*	* VBSVVH (C _{2V} = 2)	Eff.
	136,950)K	748K	137,698K		175	
Г						7	
	Object		Selecti	on			
	Leptons (µ, e)		== 0 veto*				
	Fat Jets		$\geq 2 \text{ w/ } p_T > 300 \text{ GeV}$ $AND \eta < 2.5$ $AND \text{ mass} > 50 \text{ GeV}$ $AND \text{ M}_{SD} > 40 \text{ GeV}$ $AND \text{ fat jet ID} > 0$				
	Jets		≥ 2 w/ p⊤ > AND passes t AND ∆R(jet, fa	20 GeV ight jet ID t jet) > 0.8			
	Other	≥ 1 pa	ir of AK4 jets v AND Δη _{jj}	v/ M _{jj} > 500 G j > 3			
L		*Usina	the ttH lepton	ID		_	

Yields scaled to lumi $\times \sigma$, rounded for readability

*ParticleNet XWqq = mass-decorrelated, W-to-qq-like tagger **Used in Yanxi's analysis, but can easily be changed to sync with Yifan

Object	Selections
AK8 jets (same as skim)	• $p_T > 300 \text{ GeV}$ • Fat jet ID > 0 • $ \eta < 2.5$ • Mass > 50 GeV • M _{SD} > 40 GeV
H→bb̄ fat jet	 Has max(ParticleNet Xbb)
V→qq fat jets	 Leading in ParticleNet XVqq
AK4 jets (same as skim)	 p_T > 20 GeV Passes tight jet ID ΔR(AK4, AK8) > 0.8
VBS (AK4) jets	 p_T > 30 GeV For > 2 candidates**: Take pair with maximum Δ

Nfatjets

- Plotting sum of all VBS VVH signals here
- Selections applied: skim, HLT triggers, • gen-level H, W, Z decay hadronically
- Practically 0 events with more than three fatjets

ParticleNet Taggers

Mass-correlated taggers more sharply peaked, but MD taggers may be sufficient

1000

500

1500

2000

500

1000 1500 2000 2500 3000

500 1000 1500 2000 2500 3000

BDT

Parameter	Value	Description*
objective	binary:logistic	Learning objective; 'binary:logisti specifies logistic regression for binary classification, output probability
eta	0.1	Step size shrinkage (alias: learning_rate)
<pre>max_depth</pre>	3	Max. depth of tree: larger = more complex = more prone to overfitt
verbosity	1	0 (silent), 1 (warning), 2 (info), 3 (debug)
nthread	8	Number of parallel threads
eval_metric	auc	Evaluation metrics for validation data. 'auc' = Area Under the Cur
subsample	0.6	Subsample ratio of the training instances
alpha	8.0	L1 regularization term on weights Larger = more conservative
gamma	2.0	Min. loss rediction to make leaf (alias: min_split_loss)
lambda	1.0	L2 regularization term on weights Larger = more conservative
<pre>min_child_weight</pre>	1.0	Minimum sum of instance weight (hessian) needed in a child
colsample_bytree	1.0	The subsample ratio of columns when constructing each tree
scale_pos_weight	75.0	Control the balance of positive an negative weights, useful for unbalanced classes

H_T-binned QCD Samples

- Ignoring the $H_T \in [50, 100)$ GeV sample due to low stats and irrelevant anyway
- Cross sections taken from AN-21-045
 - Measurement of the Higgs boson production via Vector Boson Fusion process with subsequent decay of the Higgs boson into a pair of bottom quarks

Table 3: List of simulated samples along with the rates used in this analysis, where [*] denotes the ultra legacy production campaign of the simulated samples, for 2016-APV, 2016-NonAPV and 2018.

Process	Sample	$\sigma \times BR$
$VBFH ightarrow bar{b}$	- VBFHToBB_M-125_TuneCP5_13TeV-powheg-pythia8/[*]/MINIAODSIM	2.233
	VBFHToBB_M-125_dipoleRecoilOn_TuneCP5_13TeV-powheg-pythia8/[*]/MINIAODSIM	
	/VBFHToBB_M-125_TuneCH3_13TeV-powheg-herwig/[*]/MINIAODSIM	
ggH→bb	/GluGluHToBB_M-125_TuneCP5_13TeV-amcatnloFXFX-pythia8/[*]/MINIAODSIM	28.293
	/GluGluHToBB_M-125_TuneCP5_13TeV-powheg-pythia8/[*]/MINIAODSIM	
QCD multijet	QCD_HT100to200_TuneCP5_13TeV-madgraphMLM-pythia8/[*]/MINIAODSIM	2784988
in H_T bins	QCD_HT200to300_TuneCP5_13TeV-madgraphMLM-pythia8/[*]/MINIAODSIM	1716992
	QCD_HT300to500_TuneCP5_13TeV-madgraphMLM-pythia8/[*]/MINIAODSIM	351302
	QCD_HT500to700_TuneCP5_13TeV-madgraphMLM-pythia8/[*]/MINIAODSIM	31630
	QCD_HT700to1000_TuneCP5_13TeV-madgraphMLM-pythia8/[*]/MINIAODSIM	6802
	QCD_HT1000to1500_TuneCP5_13TeV-madgraphMLM-pythia8/[*]/MINIAODSIM	1206
	QCD_HT1500to2000_TuneCP5_13TeV-madgraphMLM-pythia8/[*]/MINIAODSIM	98.71
	QCD_HT2000toInf_TuneCP5_13TeV-madgraphMLM-pythia8/[*]/MINIAODSIM	20.2
$t\bar{t} + X$	TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8/[*]/MINIAODSIM	88.29
	TTToHadronic_TuneCP5_13TeV-powheg-pythia8/[*]/MINIAODSIM	377.96
	TTToSemiLeptonic_TuneCP5_13TeV-powheg-pythia8/[*]/MINIAODSIM	365.34
single top	ST_tW_antitop_5f_inclusiveDecays_TuneCP5_13TeV-powheg-pythia8/[*]/MINIAODSIM	34.91
	ST_tW_top_5f_inclusiveDecays_TuneCP5_13TeV-powheg-pythia8/[*]/MINIAODSIM	34.40
	ST_t-channel_antitop_4f_InclusiveDecays_TuneCP5_13TeV-powheg-madspin-pythia8/[*]/MINIAODSIM	115.30
/	ST_t-channel_top_4f_InclusiveDecays_TuneCP5_13TeV-powheg-madspin-pythia8/[*]/MINIAODSIM	69.09
QCD Z + jets	ZJetsToQQ_HT-200to400_TuneCP5_13TeV-madgraphMLM-pythia8/[*]/MINIAODSIM	973.70
	ZJetsToQQ_HT-400to600_TuneCP5_13TeV-madgraphMLM-pythia8/[*]/MINIAODSIM	110.78
	ZJetsToQQ_HT-600to800_TuneCP5_13TeV-madgraphMLM-pythia8/[*]/MINIAODSIM	25.34
	ZJetsToQQ_HT-800toInf_TuneCP5_13TeV-madgraphMLM-pythia8/[*]/MINIAODSIM	19.00
EWK Z + jets	EWKZ2Jets_ZToQQ_TuneCP5_13TeV-madgraph-pythia8/[*]/MINIAODSIM	9.92
QCD W + jets	WJetsToQ0_HT-200to400_TuneCP5_13TeV-madgraphMLM-pythia8/[*]/MINIAODSIM	2549.00
	WJetsToQ0_HT-400to600_TuneCP5_13TeV-madgraphMLM-pythia8/[*]/MINIAODSIM	276.50
	WJetsToQQ_HT-600to800_TuneCP5_13TeV-madgraphMLM-pythia8/[*]/MINIAODSIM	59.25
	WJetsToQQ_HT-800toInf_TuneCP5_13TeV-madgraphMLM-pythia8/[*]/MINIAODSIM	28.75

VBSVVH All-Hadronic Cutflow

	QCD		TTbarJets		TotalBkg		VBSVVH	
cut	raw	wgt	raw	wgt	raw	wgt	raw	wgt
Bookkeeping	23348898	136950279.23	11563843	747778.20	34912741	137698057.43	323711	175.10
SaveSystWeights	23348898	136950279.23	11563843	747778.20	34912741	137698057.43	323711	175.10
PassesEventFilters	23228634	136757063.13	11539080	746223.20	34767714	137503286.33	320310	173.29
PassesTriggers	19971141	88614027.81	8948283	574450.50	28919424	89188478.31	314509	168.28
SelectLeptons	19971141	88614027.81	8948283	574450.50	28919424	89188478.31	314509	168.28
NoLeptons	19971141	88614027.81	8948283	574450.50	28919424	89188478.31	314509	168.28
SelectFatJets	19971141	88614027.81	8948283	574450.50	28919424	89188478.31	314509	168.28
Geq3FatJets	718294	685582.18	235834	15550.80	954128	701132.98	64241	34.92
AllMerged_SelectVVHFatJets	718294	685582.18	235834	15550.80	954128	701132.98	64241	34.92
AllMerged_SelectJets	718294	685582.18	235834	15550.80	954128	701132.98	64241	34.92
AllMerged_SelectVBSJets	355043	289829.53	157726	10373.88	512769	300203.41	37585	20.41
AllMerged_SaveVariables	355043	289829.53	157726	10373.88	512769	300203.41	37585	20.41
AllMerged_STGt800	355043	289829.53	157726	10373.88	512769	300203.41	37585	20.41
AllMerged_MjjGt500	116277	86740.41	47932	3107.13	164209	89847.55	33177	18.00
AllMerged_detajjGt3	103848	81415.71	44921	2910.10	148769	84325.81	33048	17.93
AllMerged_XbbGt0p9	5233	3984.96	14657	948.15	19890	4933.12	21957	11.62
AllMerged_XWqqGt0p9	23	20.97	269	17.32	292	38.29	8640	4.52
AllMerged_STGt1300	18	9.86	173	11.08	191	20.94	8175	4.29
AllMerged_HbbMSDLt150	9	2.68	88	5.51	97	8.19	8030	4.21
AllMerged_VqqMSDLt120	1	0.20	29	1.84	30	2.05	6982	3.75

VBSVVH All-Hadronic Triggers

Year	HLT paths
2016	HLT_PFHT800 HLT_PFHT900 HLT_AK8PFHT650_TrimR0p1PT0p03Mass50 HLT_AK8PFHT700_TrimR0p1PT0p03Mass50 HLT_AK8PFJet450 HLT_AK8PFJet360_TrimMass30 HLT_AK8DiPFJet280_200_TrimMass30 HLT_AK8DiPFJet280_200_TrimMass30_BTagCSV_p20
2017	HLT_PFHT1050 HLT_AK8PFHT800_TrimMass50 HLT_PFJet320 HLT_PFJet500 HLT_AK8PFJet320 HLT_AK8PFJet500 HLT_AK8PFJet400_TrimMass30 HLT_AK8PFJet420_TrimMass30
2018	HLT_PFHT1050 HLT_AK8PFHT800_TrimMass50 HLT_PFJet500 HLT_AK8PFJet500 HLT_AK8PFJet400_TrimMass30 HLT_AK8PFJet420_TrimMass30

