3D Gaussian DisCo Trials

Attempts to reproduce the first DisCo example
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Overview

* Goal: repeat the first example in the PRL
paper (3D gaussian variables)

* (1) and (2) define the 3D gaussians
* (3) and (4) give the rest:
* |nput: X1, X2 (DisCo target: Xo)
NN architecture: 3 hidden layers; 128
nodes per layer; ReLU between layers;
sigmoid output

 A=1000, Adam optimizer
 2M sig, 2M bkg (batch size = 40K)

KASIECZKA, NACHMAN, SCHWARTZ, and SHIH

PHYS. REV. D 103, 035021 (2021)

IV. APPLICATIONS

This section explores the efficacy of single and double
DisCo in some applications of the ABCD method.

A. Simple example: Three-dimensional Gaussian
random variables

We begin with a simple example to build some intuition
and validate our methods. Consider a three-dimensional
space (X, X;,X,), where the signal and background are
both multivariate Gaussian distributions. We choose the
means y and a covariance matrix X for background and
signal as

i, = (2.5,2.5,2),

So for the background, all three features are centered at the
origin and features X, and X are correlated with each other
but independent of X,. For the signal, all three features are
independent but are centered away from the origin. The
first feature X, will play the role of the known feature for
single DisCo in Sec. III.

All of the neural networks presented in this section use
three hidden layers with 128 nodes per layer. The rectified
linear unit (ReLU) activation function is used for the
intermediate layers and the output is a sigmoid function.
A hyperparameter of A = 1000 is used for both single and
double DisCo to ensure total decorrelation. The single
D1sCo training converged atter 100 epochs while the
double DisCo training required 200 epochs. Other net-
works only needed ten epochs. The double DisCo networks

a_single peural network with a two-

All models were trained using
Tensorflow [89] through Keras [90] with Adam [91] for
optimization. Two million examples were generated with

15% used for testing. A batch size of 1% of the total was
used for all networks to ensure an accurate calculation of
the DisCo term in the relevant loss functions.

We first consider two classifiers: a baseline classifier
fBL(X1,X,) trained only on X; and X, and a single DisCo
classifier fsp(X1,X,) which includes a penalty for corre-
lations between fsp and X,. The values of these classifiers
for events drawn from the distributions are plotted in Fig. 3
against the X, X;, or X, values of these events. We see that
even though X, was not used in the training of the baseline,
the classifier output is still correlated with X, because of the

e —

correlations between X, and X;. In contrast to the baseline
classifier, the single DisCo classifier is independent of both
X and X, and is simply a function of X,. Intuitively, it
makes sense that a classifier that must be independent of X,
must also be independent of X ;. This is justified rigorously
in Appendix B.

For double DisCo, we train two classifiers fpp(X,Y, Z)
and gpp(X,Y,Z) according to the double DisCo loss
function. The results are illustrated in Fig. 4. The first
classifier depends mostly on Z and the second classifier
depends mostly on X and Y. However, the residual
dependence on all three observables is not a deficit of
the training procedure: even though the three random
variables are separable into two independent subsets
(X,Y) and Z, the two classifiers learned by double DisCo
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NN architecture: 3 hidden layers; 128
nodes per layer; ReLU between layers; p
sigmoid output TPR

e A =1000, Adam optimizer TPR = TP/P = (true positives)/(positives)

FPR = FP/N = (false positives)/(negatives)
 2M sig, 2M bkg (batch size = 40K)
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3D Gaussians: A = 1000 DisCo

Z = LpcefspXp, X5), )+ 1000 x dCorr,_o(fsp(X;» X5), Xo)
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FIG. 3. Scatter plots showing the relationship (or lack thereof) between the three random variables X, X, and X, and (1) a baseline
classifier fg; (X;,X,) trained on X; and X, with no regularization, and (2) a classifier fsp(X;, X;) trained with the single DisCo loss
function that penalizes correlations with X ;. Only the background events are shown in these plots. The solid lines are the averages of the
classifiers over events with the same value of X;, X{, or X,. In the third panel, the scatter of the single DisCo classifier is already a line,
sO no average is needed.
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3D Gaussians: A = 1000 DisCo
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3D Gaussians: A = 1000 DisCo

Z = LpcefspXp, X5), )+ 1000 x dCorr,_o(fsp(X;» X5), Xo)
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Summary

* [t seems that the DisCo term in the loss should be dCorr (not dCorr?)

 From the Gaussian and top-tagging code, it seems this was indeed what was done

e |s this a typo, or is it dCorr? in the paper for another reason?

* Also, there appears to be a minor typo: p = 0.8 (not -0.8) for the background Gaussian
covariance matrix

 The example from the PRL paper is indeed exactly reproducible with the above
corrections
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https://github.com/bnachman/DisCo/blob/master/3DGaussianExample.ipynb
https://github.com/davidshih17/ABCDisCo
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