GNN LST Propagating the "cherry-on-top" GNN to LST efficiency plots April 4th, 2023

P. Chang, J. Guiang

- Exploring GNN for T5 classification
 - T5s have highest fake rate
 - Maybe GNN can improve over Balaji's x² "magic" cuts
- In the graph: lacksquare
 - T3s become "nodes"
 - T5 candidates become "edges"

Trial 1: GNN NTuple

- Training on T5s/T3s without duplicate removal
- pLS/pTX objects are excluded from the TCs
 - i.e. only T5s in TCs
 - Duplicate removal is applied here
- All cuts applied in T5 selection algo.
- Target question:

Can the GNN give us anything for free?

Trial 1: All cuts applied

Trial 1: GNN Performance ROC for LST master T5s, T5s in TC \rightarrow possibly large fake reduction!

- Solid curves show performance immediately after making χ^2 cuts
- Dashed curves show performance on only T5s in TC collection (i.e. after duplicate removal)
 - Q: If we run inference on only final T5s, **how** many fakes can we remove (while keeping X% of reals)?
 - A: We can **reduce fake T5s by > x2** while keeping 98% of reals
- **To-do:** propagate GNN score to LST NTuple and make DP-like efficiency plots

LST Master Efficiency Plots Showing p_T-binned eff. & FR for the **40 testing events**

LST GNN Efficiency Plots Showing p_T-binned eff & FR for the 40 testing events (98% sig eff)

Efficiency of Track Candidate

Sample:PU200 Version tag:190580D N_{evt}:40 $|\eta| < 4.5$, $|Vtx_z| < 30$ cm, $|Vtx_{xy}| < 2.5$ cm, Particle:All, Charge:All

LST Master Efficiency Plots Showing η-binned eff & FR for the **40 testing events**

Efficiency of Track Candidate

Efficiency

LST GNN Efficiency Plots Showing η-binned eff & FR for the 40 testing events (98% sig eff)

Summary

- The GNN is working:

 - Almost no efficiency loss
- All plots available here: <u>GNN, Master, GNN vs. Master</u>
- Next steps:
 - Add anchor hit φ's as T3 features
 - Edit efficiency code to allow us to look at the "Trial 2" efficiency

• "Trial 1" GNN from last week (i.e. "cherry-on-top") indeed reduces fake T5 TCs

Backup

GNN Inputs

or, layer
δr, layer
Sr, layer
5
S
S

Scaled such that all features $\in [0, 1]$

Message passing — Latent^N grap

GNN Configuration

	Symbol	Name	Description
	Фe	Message function	 Neural network 3 hidden layers 200 nodes per layer
	Φv	Readout function	 Neural network 3 hidden layers 200 nodes per layer
	f _e	Edge classifier	 Neural network 3 hidden layers 200 nodes per layer
	ρ	Aggregator	Sum
bh	l Cla	$f_e \qquad \qquad$	

GNN Internal NN Configurations

Message function

Readout function

Trial 1: GNN Performance Showing inference ROC curves before/after duplicate removal (DR)

LST Master Efficiency Plots Showing η -binned eff & FR for the **40 testing events**

Efficiency of Track Candidate

Efficiency

	-	•	-	•	-	•	
	-	•	•	-	•	•	
	-	•	-	•	•	•	
	-	-	-	•	-	•	
			1			1	
1	-	K	_ <u>_</u>	~	Y	1	

LST GNN Efficiency Plots Showing η-binned eff & FR for the 40 testing events (98% sig eff)

	-	•	-	•	-	•	
	-	•	•	-	•	•	
	-	•	-	•	•	•	
	-	-	-	•	-	•	
			1			1	
1	-	K	_ <u>_</u>	~	Y	1	

LST GNN vs. Master Plots Showing pT-binned eff & FR for master (black) vs. GNN (red, 98% sig eff)

-	-	•	-	
-	-	•	-	
-	-	-		
-	-		-	
-	-	-	-	
-				

LST Master vs. GNN Plots Showing pT-binned eff & FR for master (black) vs. GNN (red, 98% sig eff)

LST Master vs. GNN Plots Showing pT-binned eff & FR for master (black) vs. GNN (red, 98% sig eff)

LST Master vs. r-z x² Plots Showing pT-binned eff & FR for master (**black**) vs. GNN (red, 98% sig eff)

•	•	•			
•	•				•
•					
•					•
•					
•					•
•					
					1
-			 	 	