GNN LST

An overview of what we have done so far
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5 Overview

* Exploring GNN for T5 classification

* T5s have highest fake rate

« Maybe GNN can improve over Balaji’s x2
“magic” cuts

* |n the graph: Outer T3

e [3s become “nodes”

 T5 candidates become “edges”

® |InnerT3

‘ Outer

@ Middie

‘ Inner

v

Node Node

e Edge e

——_—.—_————

15

UC San Diego




O

N /

=
L

GNN Inputs

Object Feature
pt, N, P
Inner anchor hitr, z, Ar, layer
Node (T3) _ _
Middle anchor hit r, z, Ar, layer
Outer anchor hit r, z, Ar, layer
pt, N, ®
X2
Edge (T9) Inner T3 radius

Bridge 13 radius

Outer T3 radius

Scaled such that all features € [0, 1]
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GNN Configuration

Input Graph

Symbol Name

Description

- T
- ...

16 Pe Message function

* Neural network
* 3 hidden layers
» 200 nodes per layer

Message

function Dv Readout function

* Neural network
* 3 hidden layers
» 200 nodes per layer

€16 fe Edge classifier

* Neural network
» 3 hidden layers
» 200 nodes per layer
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Aggregator Readout
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Message passing LatentN graph Classifier
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Training on T5s/T3s without duplicate
removal

pLS/pTX objects are excluded from the TCs
* l.e.only T5sin TCs

 Duplicate removal is applied here

All cuts applied in TS selection algo.

Target question:

Can the GNN give us anything
for free?

Trial 1: GNN NTuple

Trial 1: All cuts applied
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All cuts applied T5s = GNN NTuple
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Not storing pLS/pTXs TCs =
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Trial 1: GNN Performance

Showing inference before/after duplicate removal (DR)

e Solid curves show performance immediately after
making X2 cuts

 Dashed curves show performance on only T5s in
TC collection (i.e. after duplicate removal)

* Q: If we run inference on only final T5s, how
many fakes can we remove (while only
removing X% of reals)?

 A: We can reduce fake T5s by a factor of 2
while only losing 1% of reals

* To-do: propagate GNN score to LST NTuple and
make DP-like efficiency plots
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Training on T5s/T3s without duplicate
removal

pLS/pTX objects are excluded from the TCs
 l.e.only Tosin TCs

 Duplicate removal is applied here
Removed ¥2 cuts from T5 selection algo.

Target question:

Can the GNN beat the 2 cuts
in LST?

Trial 2: GNN NTuple

Trial 2: No X2 cut
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No x2 cut applied! Tb5s =9 GNN NTuple
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= Trial 2: GNN Performance

We get around 10% performance over the 2 cuts!

e LST efficiency point (¥) determined as follows:

 P(N) = # of real(fake) T5s

* TP(FP) = # of real(fake) T5s after x2 cuts
* Bkg. eff. = FPR = FP/N
¢ Sig. eff. = TPR =TP/P

* Caveat: this is only comparing at the T5-building
stage of LST (i.e. not the final efficiency!)

 Caveat: LST w/ vs. w/out ¥2 is 99.9% fair (next)

10

10 A

0.8

o
h

Signal efficiency

0.2 4

0.0 1 '

— train (AUC = 0.89)

% LST x? cuts (82.0% sig eff, 43.9% bkg eff)

¥ DR test 82.0% sig eff (22.5% bkg eff)
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= Trial 2: GNN Performance
We get around 10% performance over the 2 cuts!
 Took TP, FP numbers from Trial 1 NTuple B
* Took P, N numbers from Trial 2 NTuple *
 LST is not fully deterministic, so FPR and TPR are _,
not completely accurate G o
o
* Numbers seem stable, so should be accurate 2.
anyway »
- — train (AUC = 0.89)
| test (AUC = 0.88)
| % LST x? cuts (82.0% sig eff, 43.9% bkg eff)
¥ DR test 82.0% sig eff (22.5% bkg eff)
00{ | A DR test 93.0% sig eff (43.9% bkg eff)
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Summary

 The GNN is working, but we can probably make it better

* DRLST vs. DR GNN seems too good to be true
 Maybe | am miscalculating somewhere?

* Next steps:
e Add GNN scores from Trial 1 to LST NTuple and make DP-like efficiency plots
* More datal

* Experiment with GNN configuration/hyperparameters/etc.

* Consult J. Duarte for inspiration
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Trial 1: GNN Performance

Showing inference before/after duplicate removal (DR)
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Trial 2: GNN Performance

Showing inference before/after duplicate removal (DR)
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GNN Internal NN Configurations
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