GNN LST An overview of what we have done so far March 31st, 2023

P. Chang, J. Guiang

Setup

- Exploring GNN for T5 classification
 - T5s have highest fake rate
 - Maybe GNN can improve over Balaji's χ^2 "magic" cuts
- In the graph: ullet
 - T3s become "nodes"
 - T5 candidates become "edges"

Overview

GNN Inputs

Feature
р⊤, η, φ
Inner anchor hit r, z, Δ r, layer
Middle anchor hit r, z, Δ r, layer
Outer anchor hit r, z, Δ r, layer
р⊤, η, ф
X ²
Inner T3 radius
Bridge T3 radius
Outer T3 radius

Scaled such that all features \in [0, 1]

Message passing — Latent^N graph

GNN Configuration

	Symbol	Name	Description
	Фе	Message function	 Neural network 3 hidden layers 200 nodes per layer
	Φv	Readout function	 Neural network 3 hidden layers 200 nodes per layer
	f e	Edge classifier	 Neural network 3 hidden layers 200 nodes per layer
	ρ	Aggregator	Sum
h	l Cla	$f_e \rightarrow y_{ij}$ Edge assifier	

Trials

Trial 1: GNN NTuple

- Training on T5s/T3s without duplicate removal
- pLS/pTX objects are excluded from the TCs
 - i.e. only T5s in TCs
 - Duplicate removal is applied here
- All cuts applied in T5 selection algo.
- Target question:

Can the GNN give us anything for free?

Trial 1: All cuts applied

Trial 1: GNN Performance Showing inference before/after duplicate removal (DR)

- Solid curves show performance immediately after making χ^2 cuts
- Dashed curves show performance on only T5s in TC collection (i.e. after duplicate removal)
 - Q: If we run inference on only final T5s, **how** many fakes can we remove (while only removing X% of reals)?
 - A: We can reduce fake T5s by a factor of 2 while only losing 1% of reals
- **To-do:** propagate GNN score to LST NTuple and make DP-like efficiency plots

Trial 2: GNN NTuple

- Training on T5s/T3s without duplicate removal
- pLS/pTX objects are excluded from the TCs
 - i.e. only T5s in TCs
 - Duplicate removal is applied here
- Removed χ^2 cuts from T5 selection algo.
- Target question:

Can the GNN beat the χ^2 cuts in LST?

Trial 2: No x² cut

Trial 2: GNN Performance We get around 10% performance over the x² cuts!

• LST efficiency point (\bigstar) determined as follows: 1.0 • P(N) = # of real(fake) T5s 0.8 • TP(FP) = # of real(fake) T5s after χ^2 cuts efficiency 0.6 • Bkg. eff. = FPR = FP/NSignal or • Sig. eff. = TPR = TP/Ptrain (AUC = 0.89) 0.2 • **Caveat:** this is only comparing at the T5-building test (AUC = 0.88)LST χ^2 cuts (82.0% sig eff, 43.9% bkg eff) stage of LST (i.e. *not* the final efficiency!) DR test 82.0% sig eff (22.5% bkg eff) DR test 93.0% sig eff (43.9% bkg eff) 0.0 • **Caveat:** LST w/ vs. w/out χ^2 is 99.9% fair (next) 0.0 0.2 0.4 0.8 10 Background efficiency

Trial 2: GNN Performance We get around 10% performance over the χ^2 cuts!

- Took TP, FP numbers from Trial 1 NTuple
- Took P, N numbers from Trial 2 NTuple
- LST is not fully deterministic, so FPR and TPR are not completely accurate
 - Numbers seem stable, so should be accurate anyway

Summary

- The GNN is working, but we can probably make it better
- DR LST vs. DR GNN seems too good to be true •
 - Maybe I am miscalculating somewhere?
- Next steps:

 - More data! lacksquare
 - Experiment with GNN configuration/hyperparameters/etc. ullet
 - Consult J. Duarte for inspiration

Add GNN scores from Trial 1 to LST NTuple and make DP-like efficiency plots

Backup

CMS

Trial 1: GNN Performance Showing inference before/after duplicate removal (DR)

Trial 2: GNN Performance Showing inference before/after duplicate removal (DR)

GNN Internal NN Configurations

Message function

Readout function

