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February 21st, 2023



GNN Fundamentals

2



3

The GNN Algorithm: Notation

4
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Graph

A =

0 0 0 1 0 1
0 0 0 0 0 1
0 0 0 0 0 1
1 0 0 0 1 1
0 0 0 1 0 0
1 1 1 1 0 0

Adjacency matrix

Connectivity of a graph can be represented as a matrix
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The GNN Algorithm: Notation
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Edge ij

For GNNs, nodes and edges correspond to vectors of information
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The GNN Algorithm: Notation

Input graph

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

Latent graph

⃗h 4

⃗h 1

⃗h 5

⃗h 3

⃗h 2

⃗h 6

GNN input is necessarily a graph (of course)
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The GNN Algorithm

Input graph

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

Latent graph

⃗h 4

⃗h 1

⃗h 5

⃗h 3

⃗h 2

⃗h 6

Goal: transform input graph to latent representation 
(and bias transformation to encode information)
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The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 1

⃗h 5

⃗h 3

⃗h 2

⃗h 6

Transformation is done node-wise, let’s start with Node 6
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The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 1

⃗h 5

⃗h 3

⃗h 2

⃗h 6

ϕe

⃗x 1 ⃗x 6⃗e 16

Message function

⃗e 16

For each neighbor of Node 6 pass link information into message function*

*The “e” subscript in φe stands for “edge,” per the edge-like dimension of the function
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The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 1

⃗h 5

⃗h 3

⃗h 2

⃗h 6

ϕe

⃗x 1 ⃗x 6

⃗m16

Message function

Message⃗m16

Message function produces a message conditioned by edge features

⃗e 16
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The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 1

⃗h 5

⃗h 3

⃗h 2

⃗h 6

⃗x 1 ⃗x 6⃗e 16

⃗m16⃗m16

The message function is usually Multilayer Perceptron (MLP)

ϕe

ϕe

⃗x 1 ⃗x 6⃗e 16

⃗m16

=
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The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 1

⃗h 5

⃗h 3

⃗h 2

⃗h 6

ϕe

⃗x 4 ⃗x 6⃗e 46

⃗m46

Message function

Message

⃗m46

⃗m16

Compute a message for every neighbor of Node 6
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The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 1

⃗h 5

⃗h 3

⃗h 2

⃗h 6

ϕe

⃗x 3 ⃗x 6⃗e 36

⃗m36

Message function

Message

⃗m46

⃗m16

⃗m36

Compute a message for every neighbor of Node 6
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The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 1

⃗h 5

⃗h 3

⃗h 2

⃗h 6

ϕe

⃗x 2 ⃗x 6⃗e 26

⃗m26

Message function

Message

⃗m46

⃗m16

⃗m36

⃗m26

Compute a message for every neighbor of Node 6
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The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 1

⃗h 5

⃗h 3

⃗h 2

⃗h 6ρv

⃗m46

⃗m16

⃗m36

⃗m26 ⃗m16
⃗m26
⃗m36
⃗m46 Aggregator*

ρ

Next, we aggregate all messages together

*Must be permutation invariant, e.g. a simple sum: ⃗m16 + ⃗m26 + ⃗m36 + ⃗m46
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The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 1

⃗h 5

⃗h 3

⃗h 2

⃗h 6

⃗m46

⃗m16

⃗m36

⃗m26 ⃗m16
⃗m26
⃗m36
⃗m46 Aggregator*

ρ ϕv

⃗x 6

Readout 
function

Pass aggregation and Node 6 itself through readout function* 
to get latent representation of Node 6

*The “v” subscript in φv stands for “vertex” (i.e. node), per the vertex-like dimension  
 of the function
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The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 1

⃗h 5

⃗h 3

⃗h 2

⃗h 6

⃗m46

⃗m16

⃗m36

⃗m26 ⃗m16
⃗m26
⃗m36
⃗m46

ϕv

Readout 
function

The readout function is also usually a MLP

ρ

Aggregator*

⃗x 6

ϕv

⃗x 6ρ( ⃗m16, ⃗m26, ⃗m36, ⃗m46)

⃗h 6
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The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 1

⃗h 5

⃗h 3

⃗h 2

⃗h 6

⃗m46

⃗m16

⃗m36

⃗m26 ⃗m16
⃗m26
⃗m36
⃗m46 Aggregator*

ρ ϕv

⃗x 6

Readout 
function

Finally, repeat process for all nodes in the graph
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The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 5

⃗h 3

⃗h 2

⃗h 6

⃗h 1

⃗m41

⃗m61

⃗m61
⃗m41

Aggregator*

ρ ϕv

⃗x 1

Readout 
function

Finally, repeat process for all nodes in the graph

⃗h 1
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The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 5

⃗h 3

⃗h 2

⃗h 6

⃗h 1

⃗m62

⃗m62

Aggregator*

ρ ϕv

⃗x 2

Readout 
function

Finally, repeat process for all nodes in the graph

⃗h 2
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The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 5

⃗h 3

⃗h 2

⃗h 6

⃗h 1

⃗m63

⃗m63

Aggregator*

ρ ϕv

⃗x 3

Readout 
function

Finally, repeat process for all nodes in the graph

⃗h 3
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The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 5

⃗h 4
⃗h 3

⃗h 2

⃗h 6

⃗h 1

⃗m64⃗m54

⃗m14
⃗m64

⃗m54 Aggregator*

ρ ϕv

⃗x 4

Readout 
function

Finally, repeat process for all nodes in the graph

⃗h 4

⃗m14
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The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 5

⃗h 3

⃗h 2

⃗h 6

⃗h 1

⃗m45

⃗m45

Aggregator*

ρ ϕv

⃗x 5

Readout 
function

Finally, repeat process for all nodes in the graph

⃗h 5
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The GNN Algorithm
Can perform multiple rounds of message passing to diffuse graph information

Input graph Latent graph

…

Latent latent graph

• Each round of message passing aggregates info from neighbors of Node i to latent Node i


• Doing this multiple times effectively diffuses information across graph


• Only takes a few rounds to “saturate” this process
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The GNN Algorithm
Flexible learning objectives

• The power of the latent graph is leveraged by another classifier


• e.g. attach a MLP to the end of the GNN “pipeline” and train it to infer data about your 
input graph from the latent representation


• Can be done in three dimensions: node

Input graph

⃗x i
⃗h i

GNN
LatentN graph

…
Node classification

fv yi
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The GNN Algorithm
Flexible learning objectives

Input graph

⃗x i
⃗h i

GNN
LatentN graph

…
Node classification

fv yi

Edge classification

fe yij

• The power of the latent graph is leveraged by another classifier


• e.g. attach a MLP to the end of the GNN “pipeline” and train it to infer data about your 
input graph from the latent representation


• Can be done in three dimensions: node, edge
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The GNN Algorithm

• The power of the latent graph is leveraged by another classifier


• e.g. attach a MLP to the end of the GNN “pipeline” and train it to infer data about your 
input graph from the latent representation


• Can be done in three dimensions: node, edge, graph

Flexible learning objectives

Input graph

⃗x i
⃗h i

GNN
LatentN graph

…
Node classification

fv yi

Edge classification

fe yij

Graph classification

fG yG



GNNs and LST
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• Currently form all line segments and check 
for (rough) pT consistency


• Because these are low level objects, make 
very loose cuts


• Large # of true segments


• Very large # of fake segments


• First exploration: can the GNN select the 
same # of true, but a smaller # of fake 
segments?

GNN LST: Line Segments

Layer i

Layer i+1
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• First exploration: can the GNN select the 
same # of true, but a smaller # of fake 
segments?


• Run GNN on segments from LST LS step


• Philip has already done this, but only ran 
the simplest model


• e.g. only 1 round of message passing


• Maybe also loosen pT consistency cuts


• We suspect this will only give more fakes 
and not much more true tracks

GNN LST: Line Segments

Layer i

Layer i+1
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• For making high-level objects, can “pool” graph together in various ways


• e.g. Make every segment a node in a new graph


• Then, connections between these nodes are triplet candidates

GNN LST: High-level Inferences
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• Second exploration: can the GNN select the same # of true, but a smaller # of fake 
triplets?


• Third exploration: can the GNN select the same # of true, but a smaller # of fake 
quintuplets?


• …


• Nth exploration: can the GNN select the same # of true, but smaller # of fake track 
candidates?


• At each step, compare efficiency metrics with current LST algorithm

GNN LST: Stepwise Explorations
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• GNNs leverage interconnectivity of data to better use multiple MLPs towards a diverse 
set of classification problems


• We propose a step-wise exploration of incorporating GNNs into LST


• Try to reconstruct different objects and compare efficiency/performance


• i.e. walk our way from line segments to entire track candidates


• Next steps:


• Run Philip’s existing GNN pipeline


• Modify Philip’s GNN


• Compare # true and # fake LS (i.e. the “first exploration”)

Summary



Backup
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• Each round of message passing aggregates 
info from neighbors of Node i to latent Node i


• Doing this multiple times effectively diffuses 
information across graph


• Only takes a few rounds to “saturate” this 
process

GNN Information Diffusion


