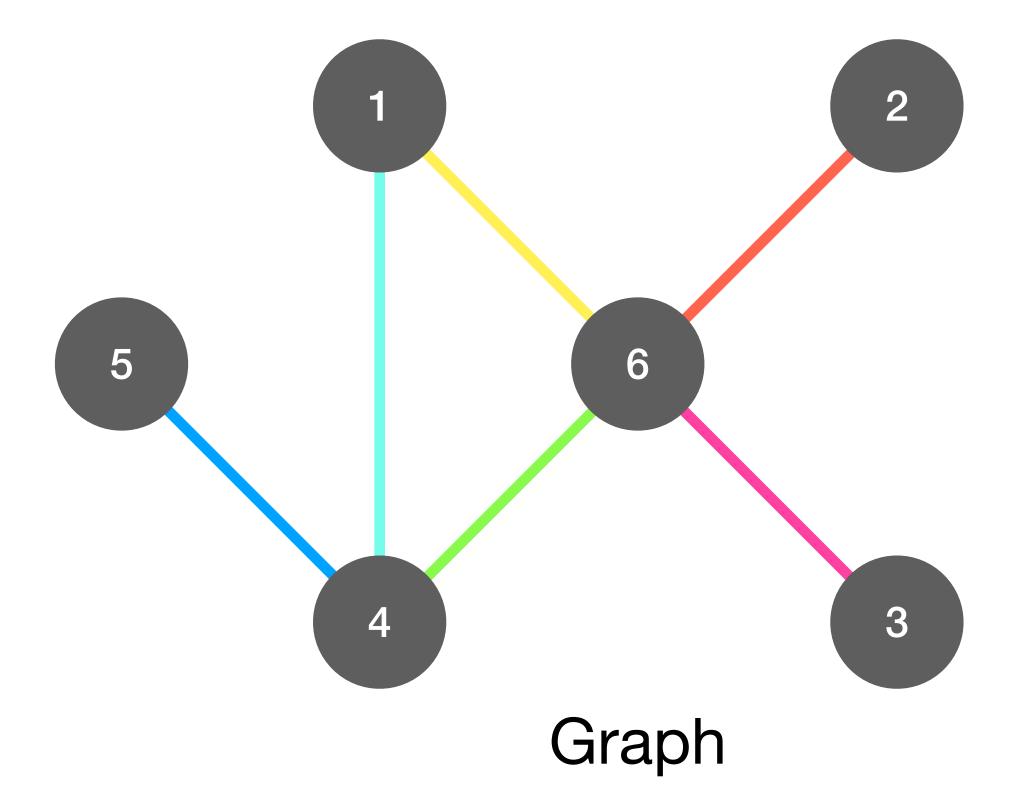
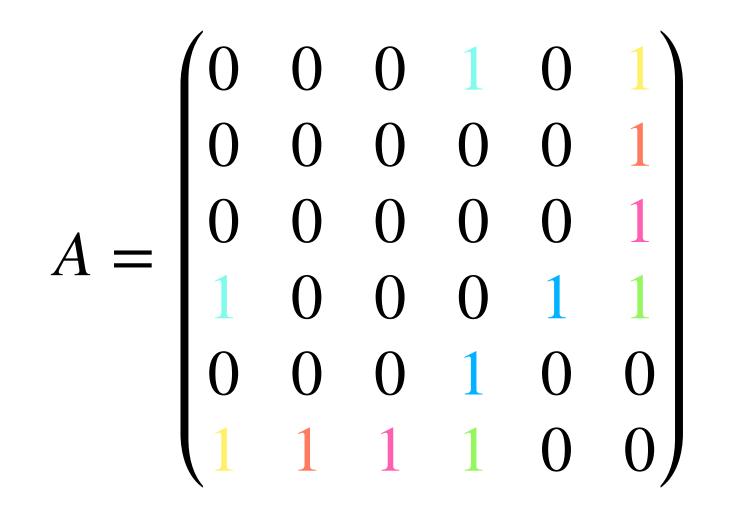
GNN LST An introduction to GNNs and an exploratory roadmap February 21st, 2023

P. Chang, J. Guiang

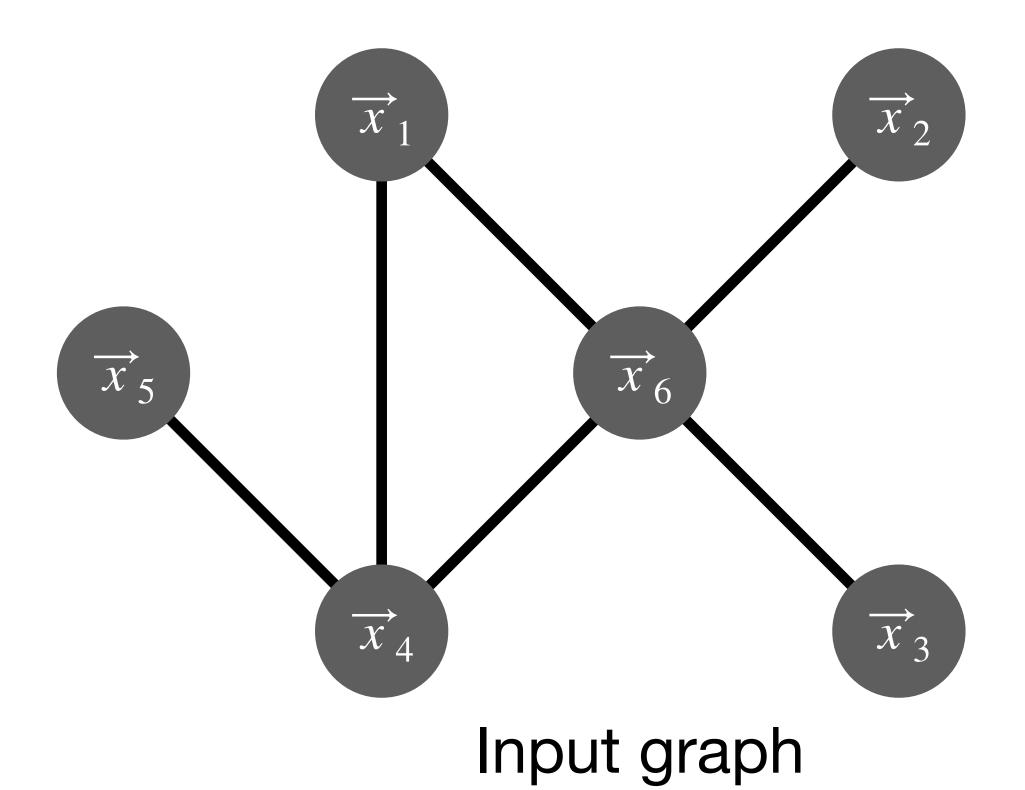
GNN Fundamentals



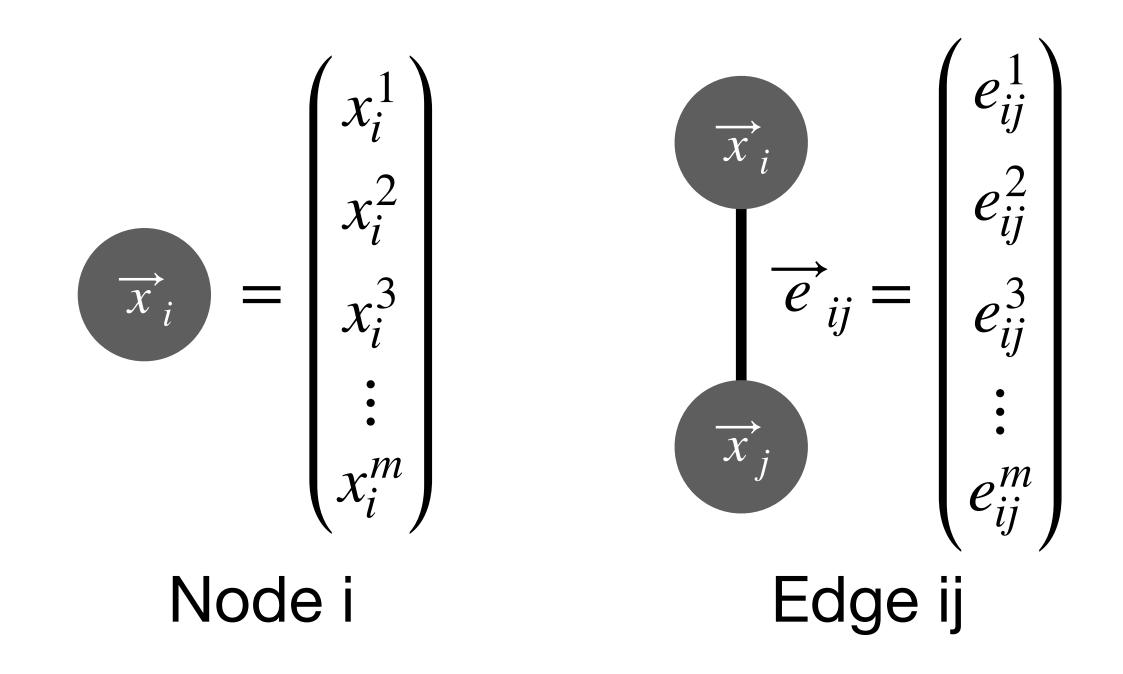
The GNN Algorithm: Notation



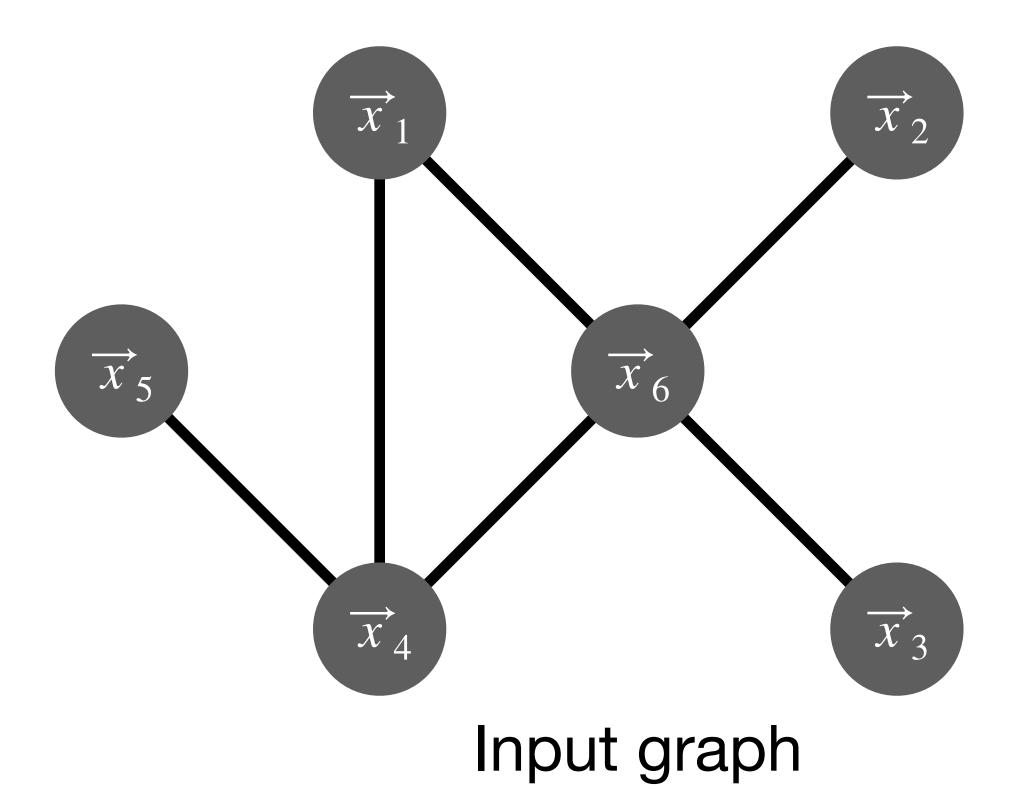
Adjacency matrix

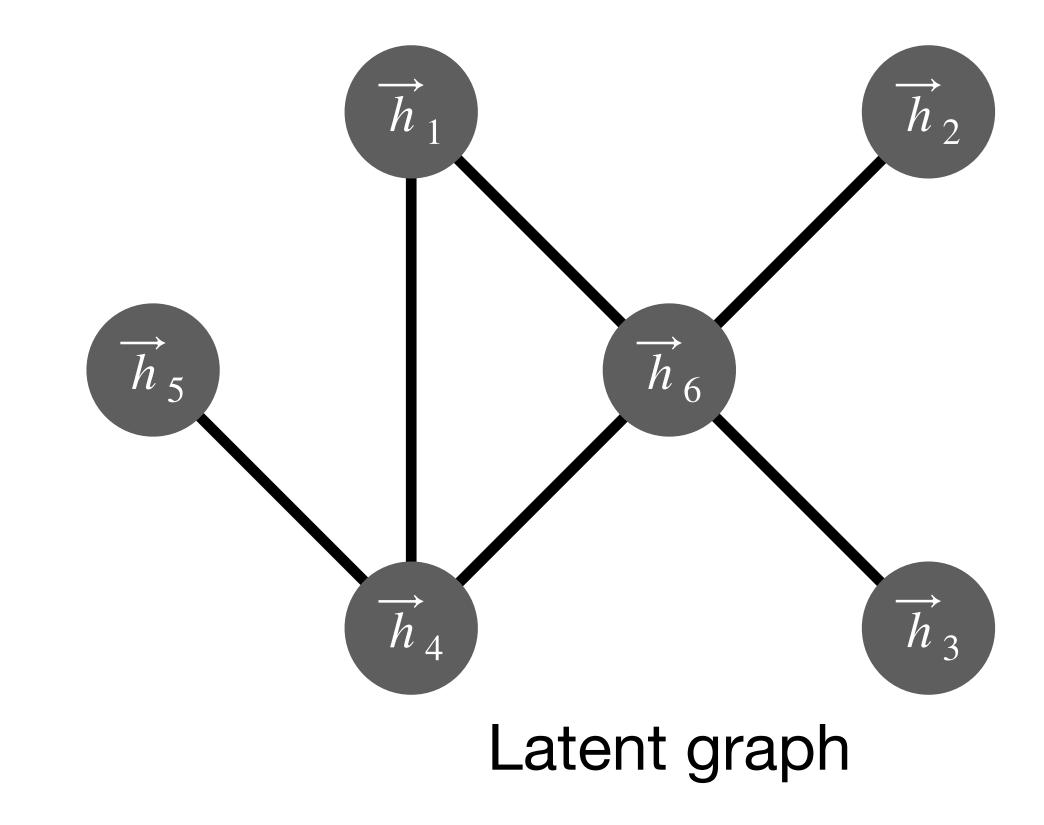


The GNN Algorithm: Notation For GNNs, nodes and edges correspond to vectors of information



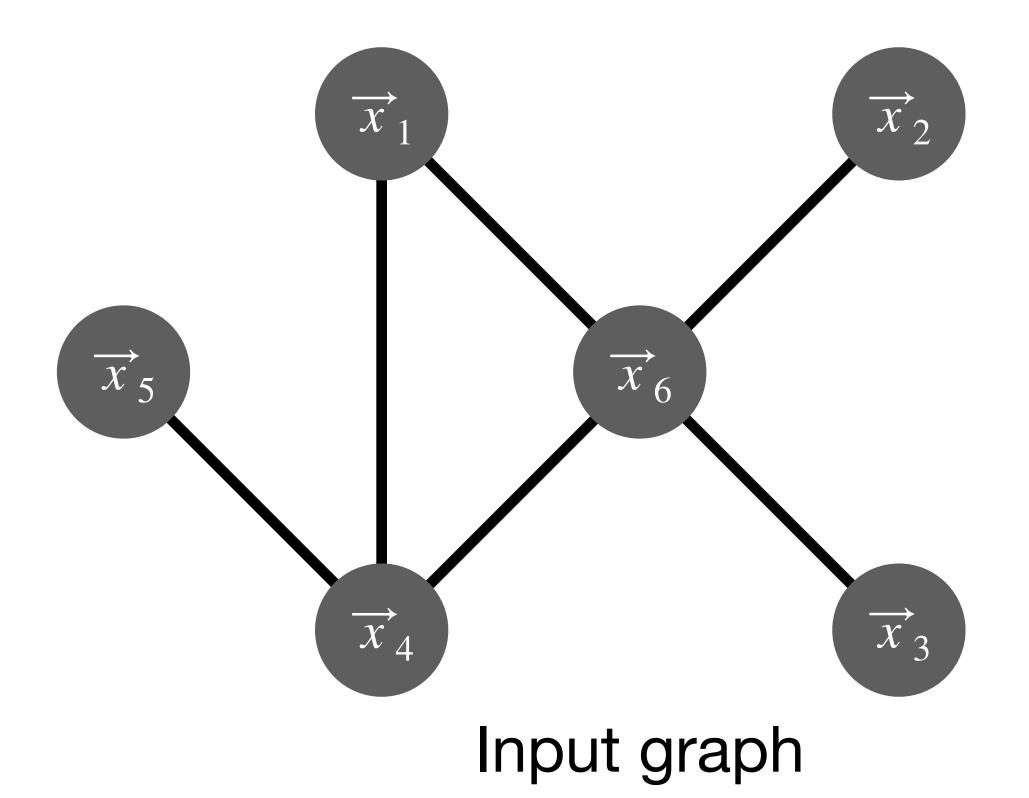
The GNN Algorithm: Notation GNN input is necessarily a graph (of course)

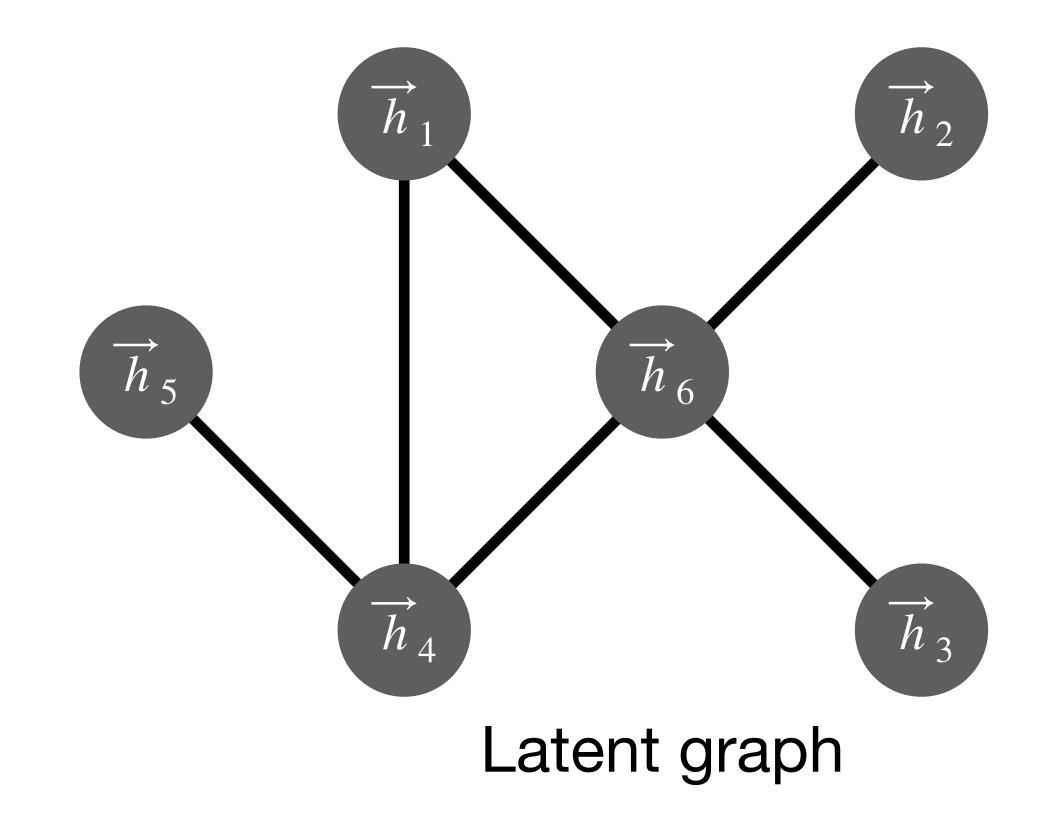




UC San Diego

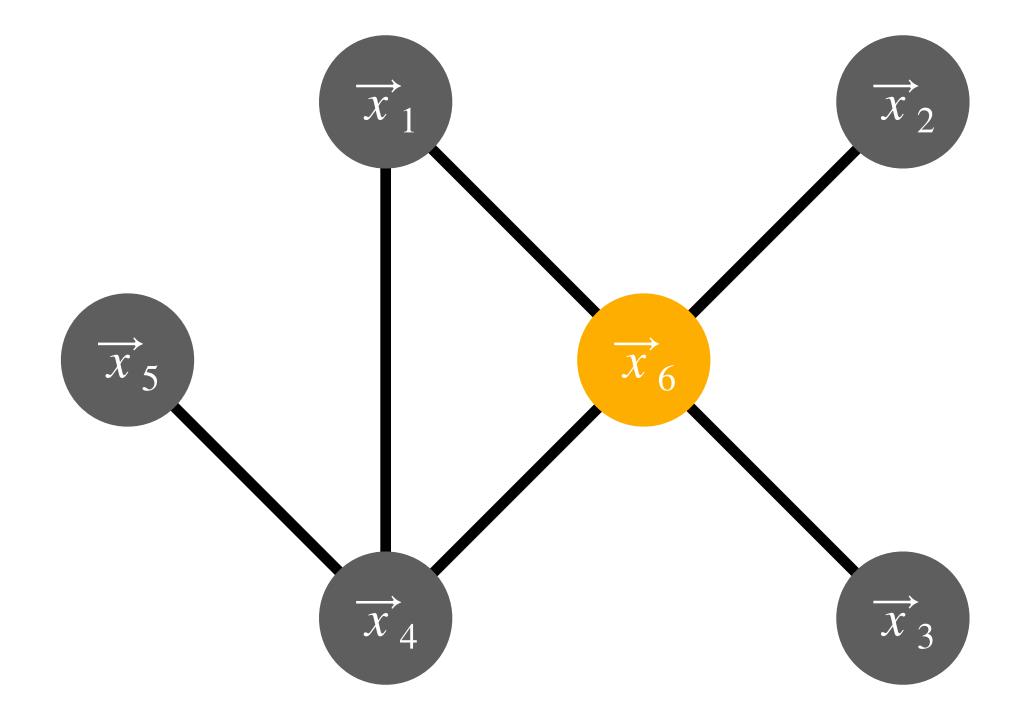
The GNN Algorithm Goal: transform input graph to latent representation (and bias transformation to encode information)

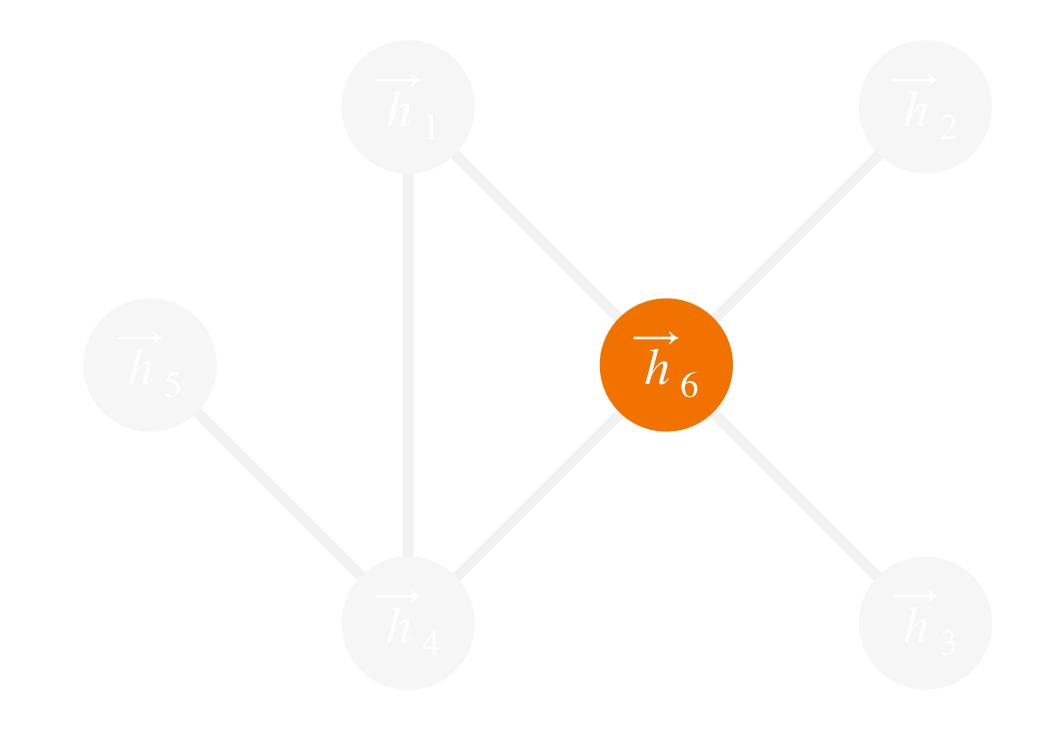




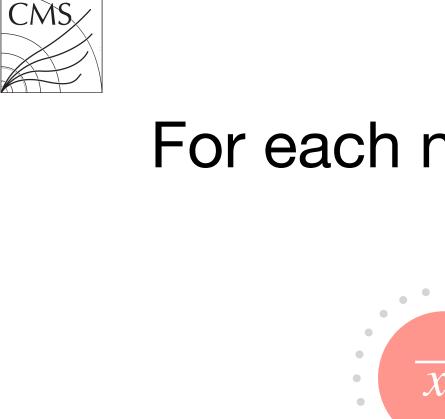
UC San Diego

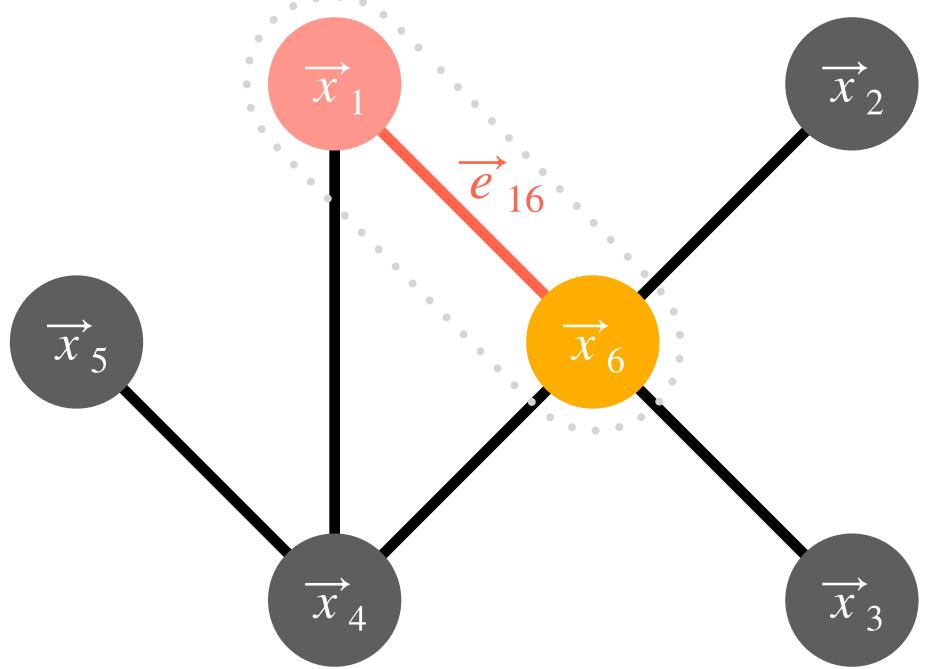
The GNN Algorithm Transformation is done node-wise, let's start with Node 6

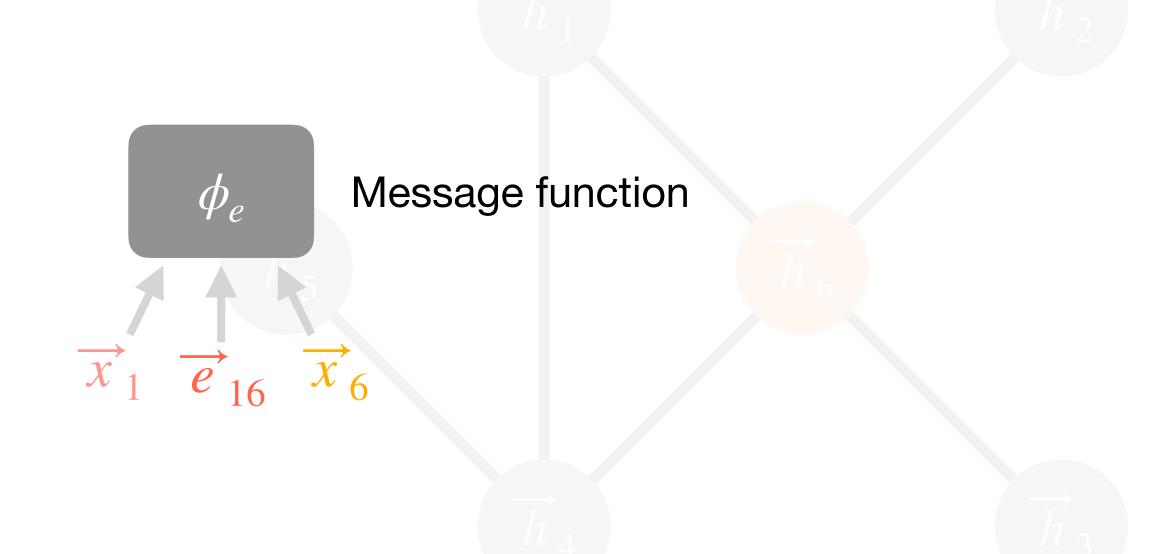




The GNN Algorithm For each neighbor of Node 6 pass link information into message function*

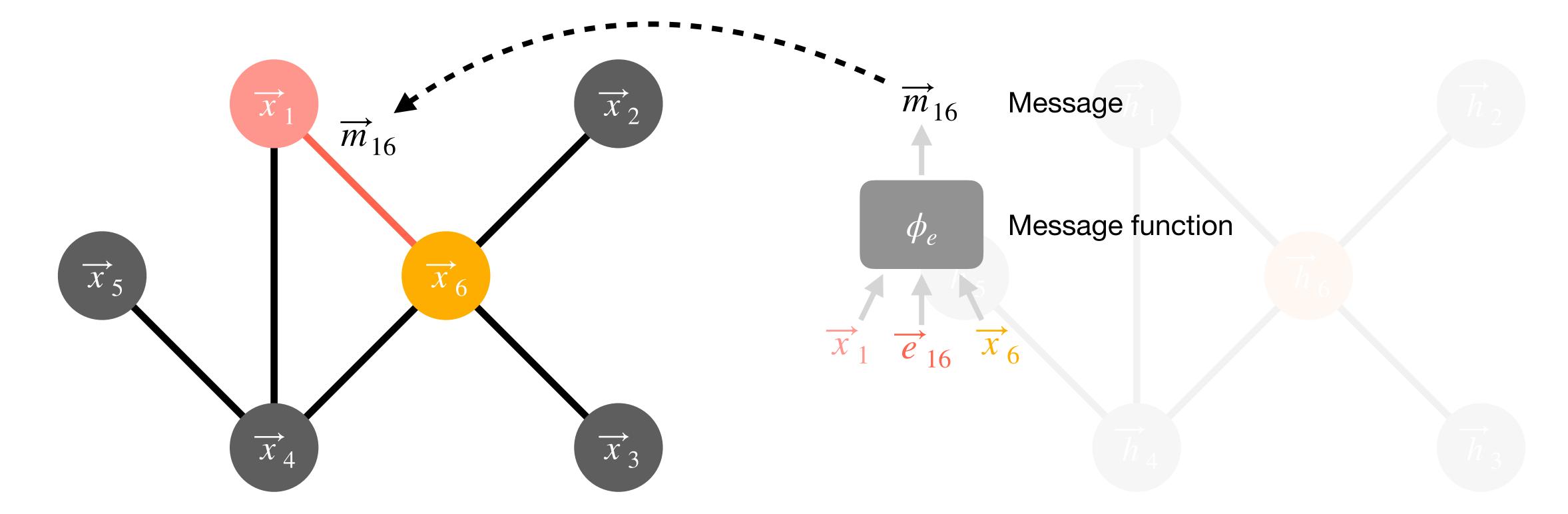




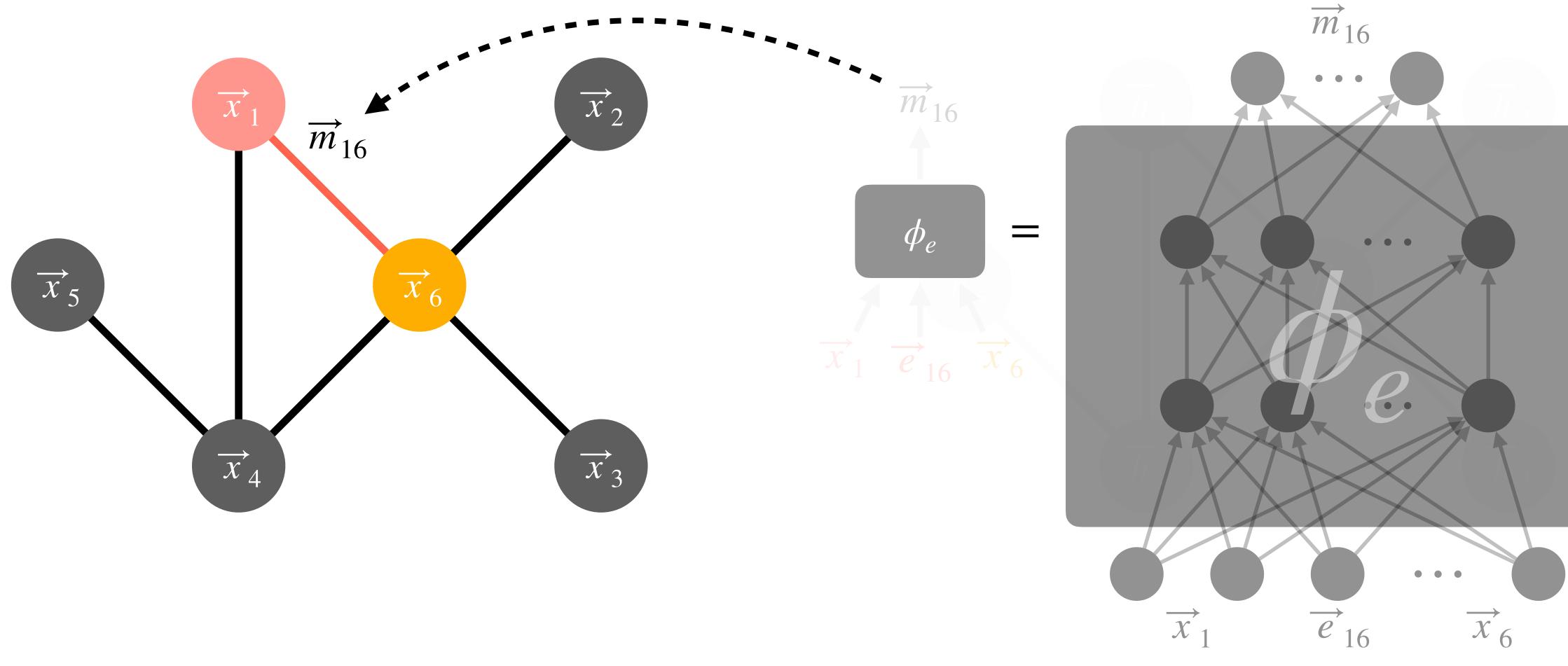


^{*}The "e" subscript in ϕ_e stands for "edge," per the edge-like dimension of the function

The GNN Algorithm Message function produces a message conditioned by edge features

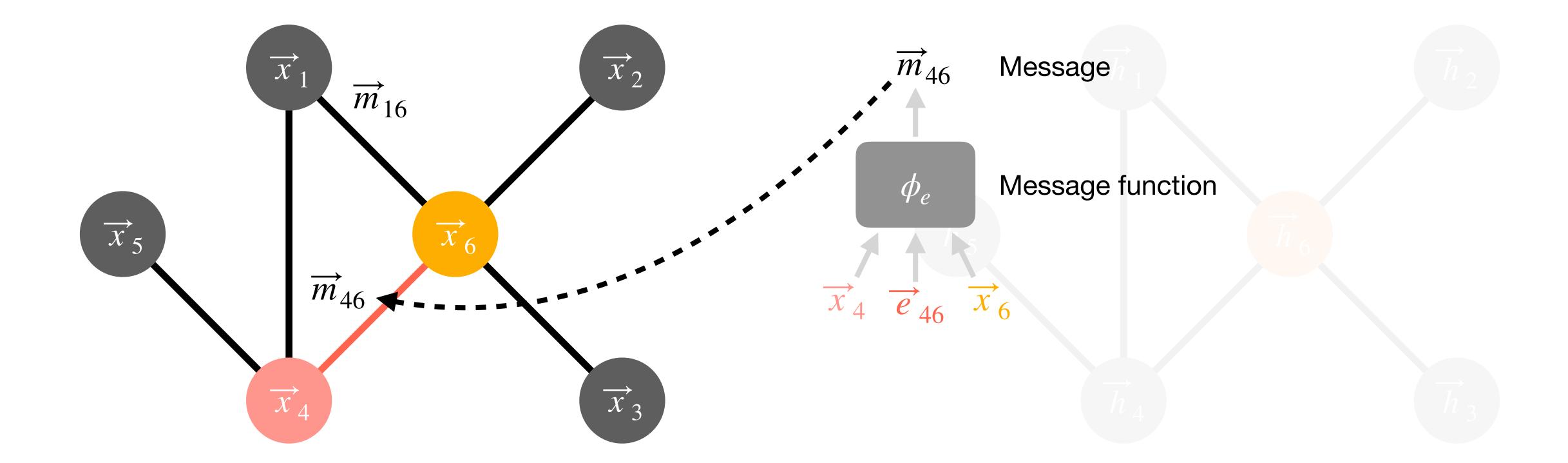


The GNN Algorithm The message function is usually Multilayer Perceptron (MLP)

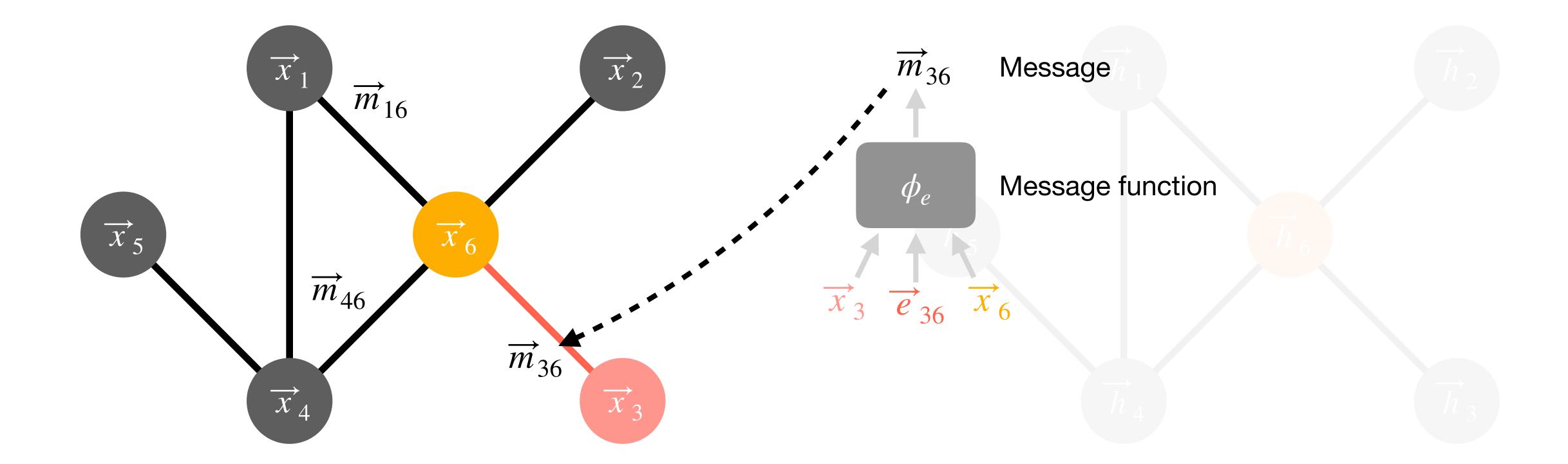


UC San Diego

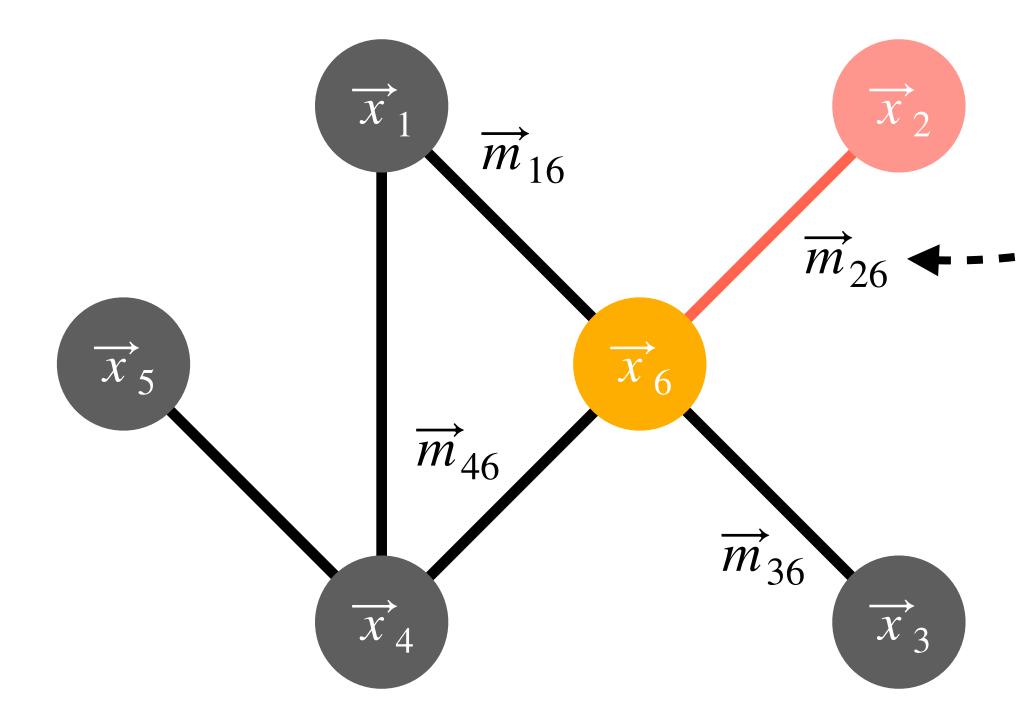
The GNN Algorithm Compute a message for every neighbor of Node 6

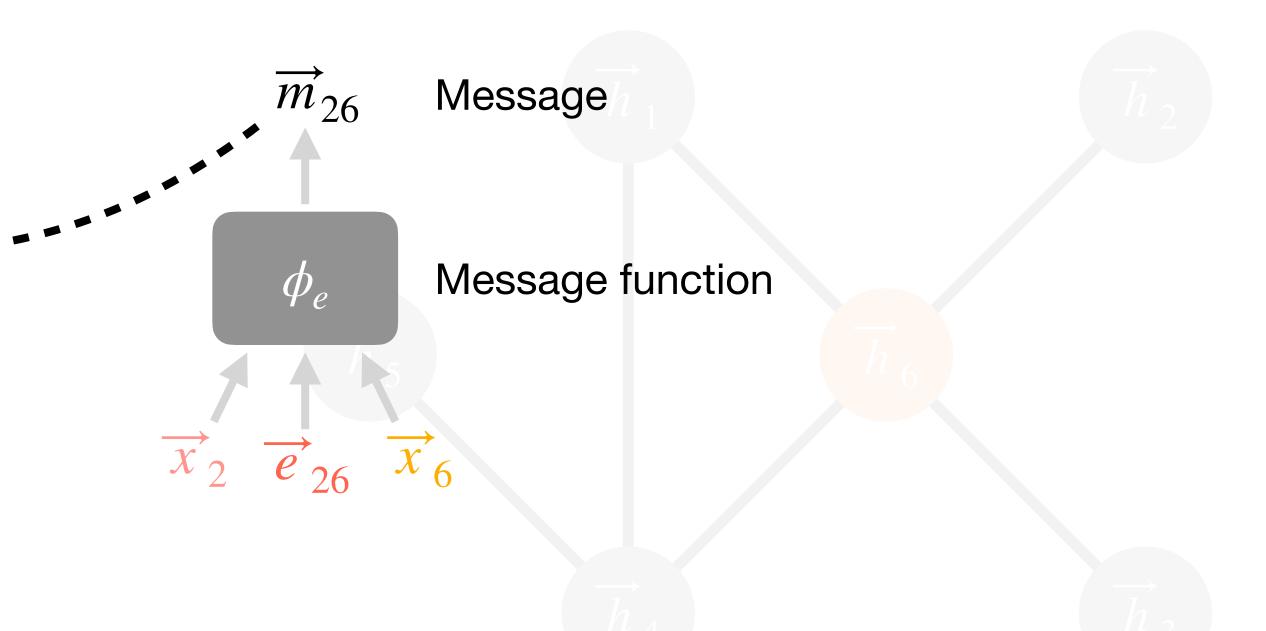


The GNN Algorithm Compute a message for every neighbor of Node 6

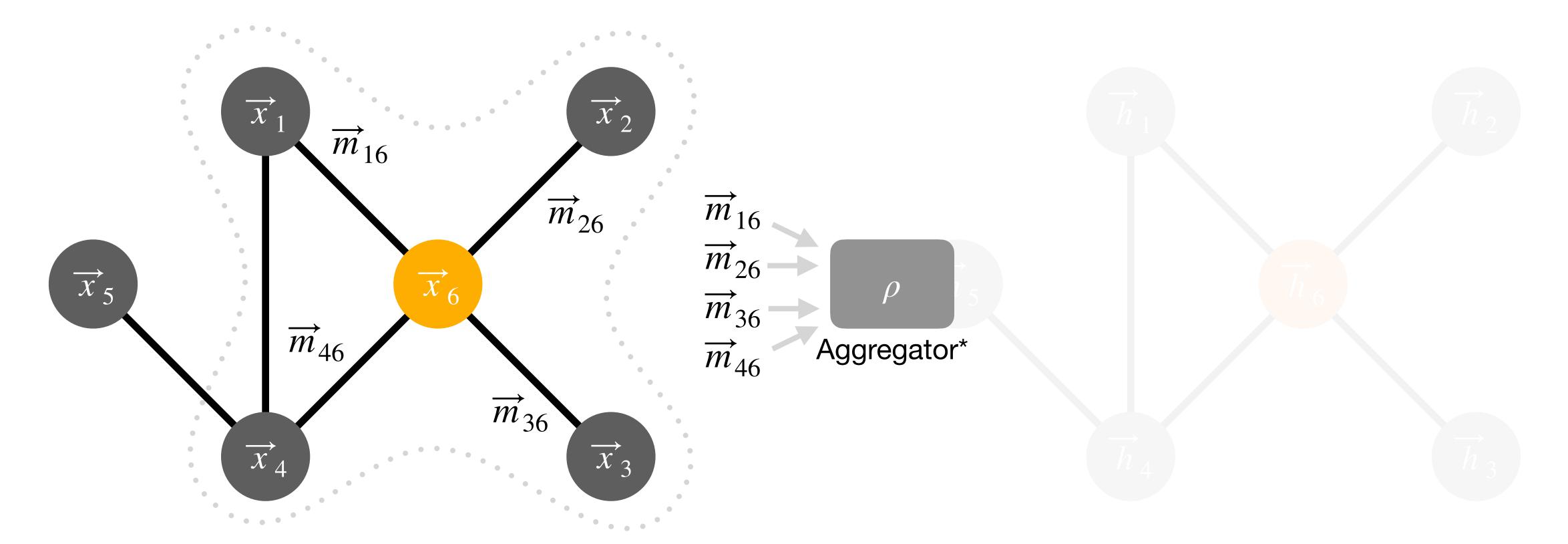


The GNN Algorithm Compute a message for every neighbor of Node 6



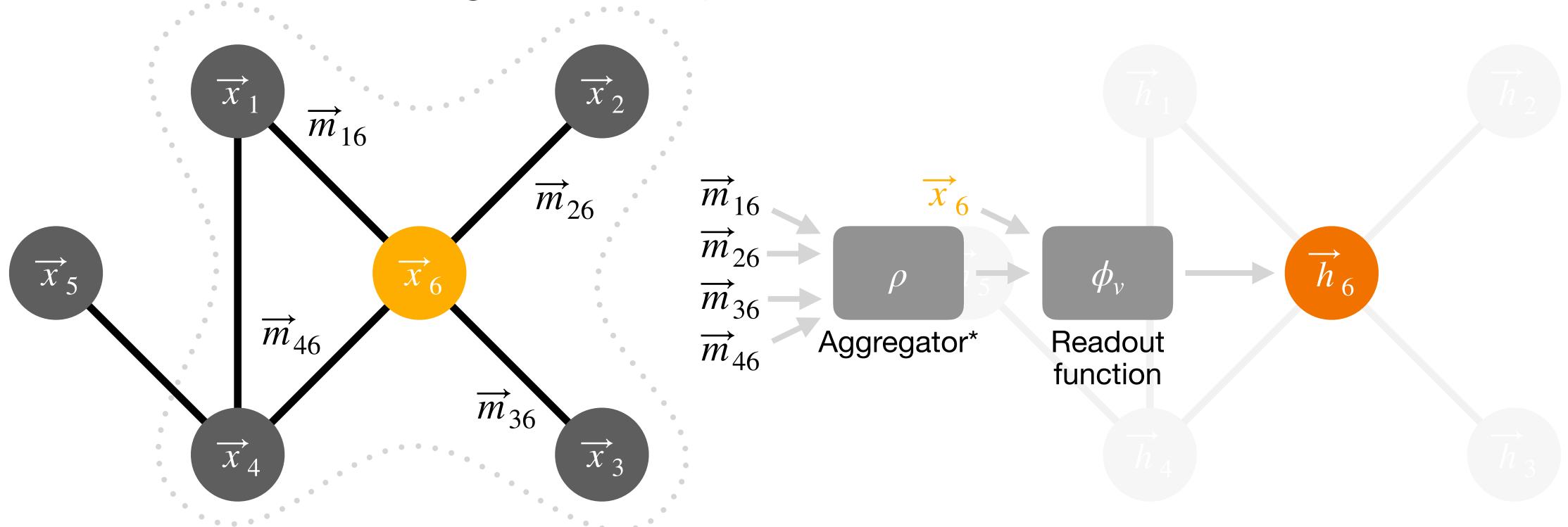


The GNN Algorithm Next, we aggregate all messages together

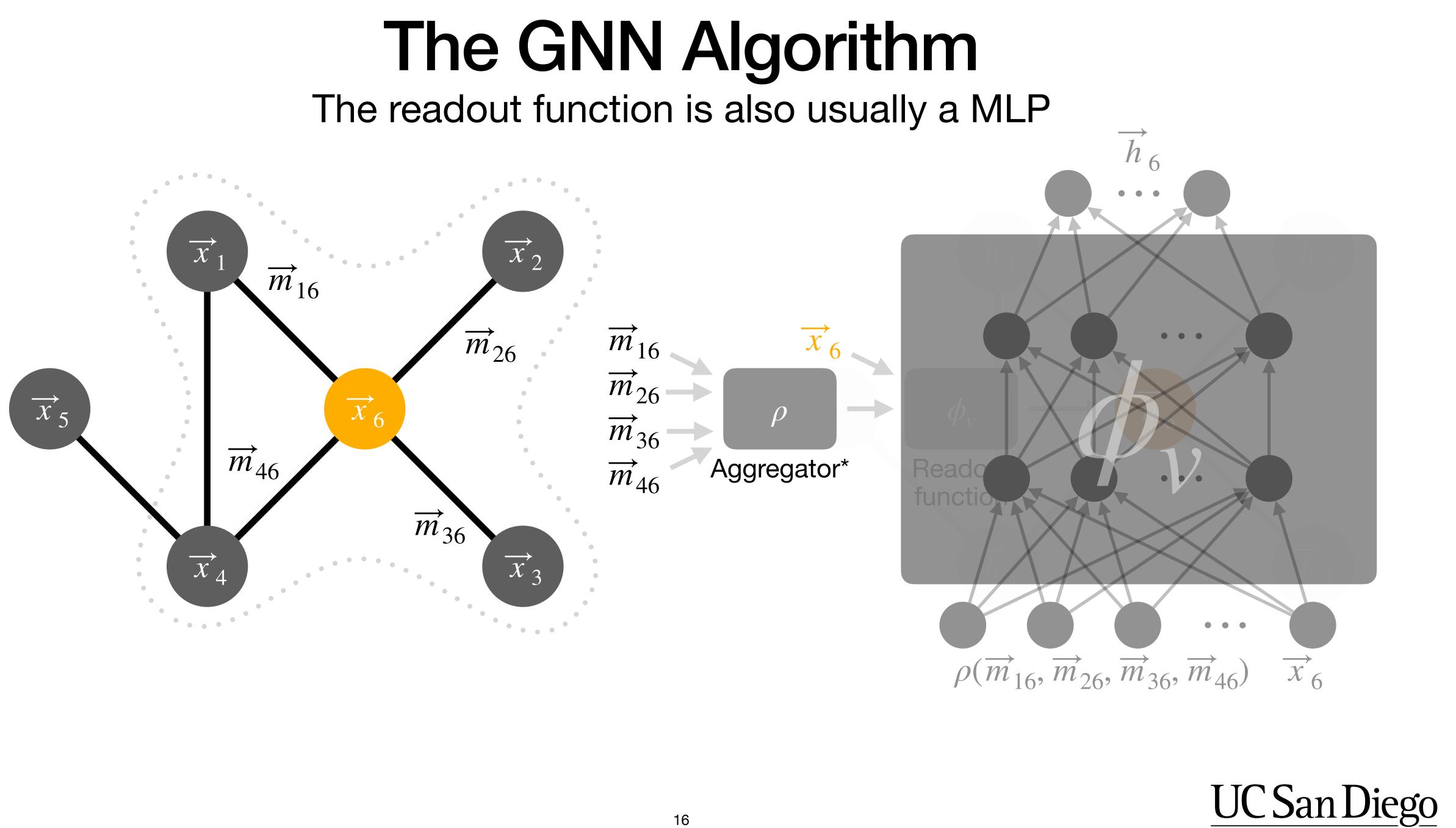


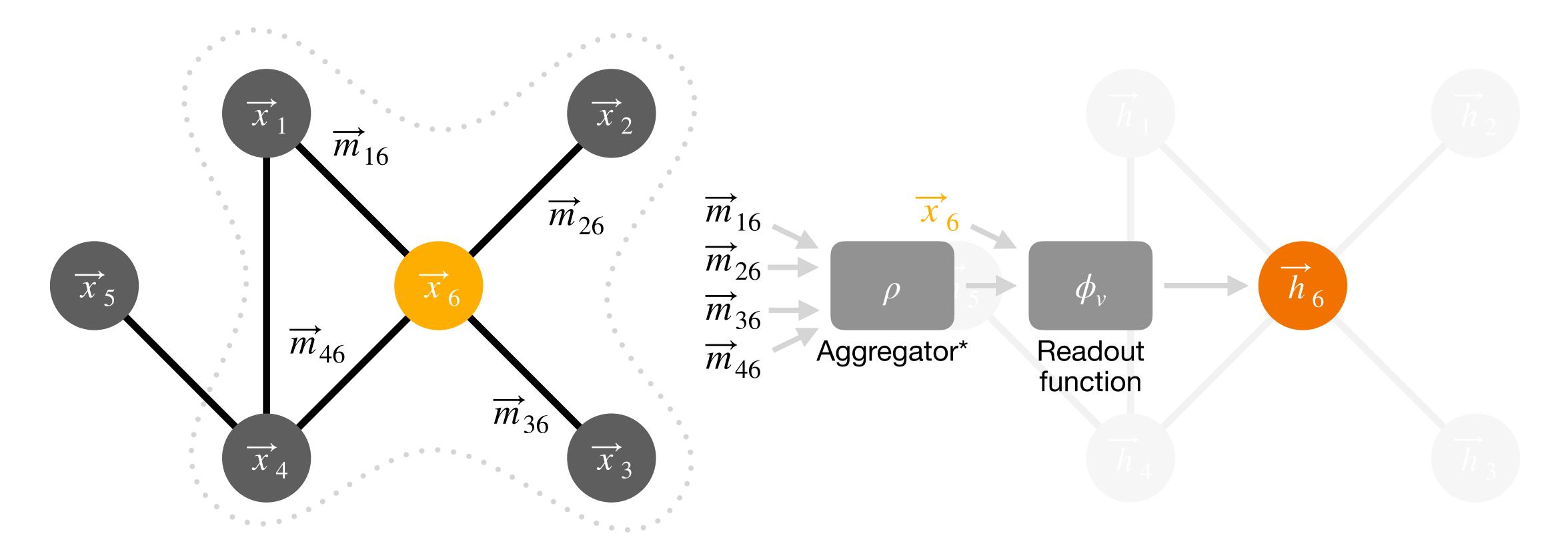
*Must be permutation invariant, e.g. a simple sum: $\vec{m}_{16} + \vec{m}_{26} + \vec{m}_{36} + \vec{m}_{46}$

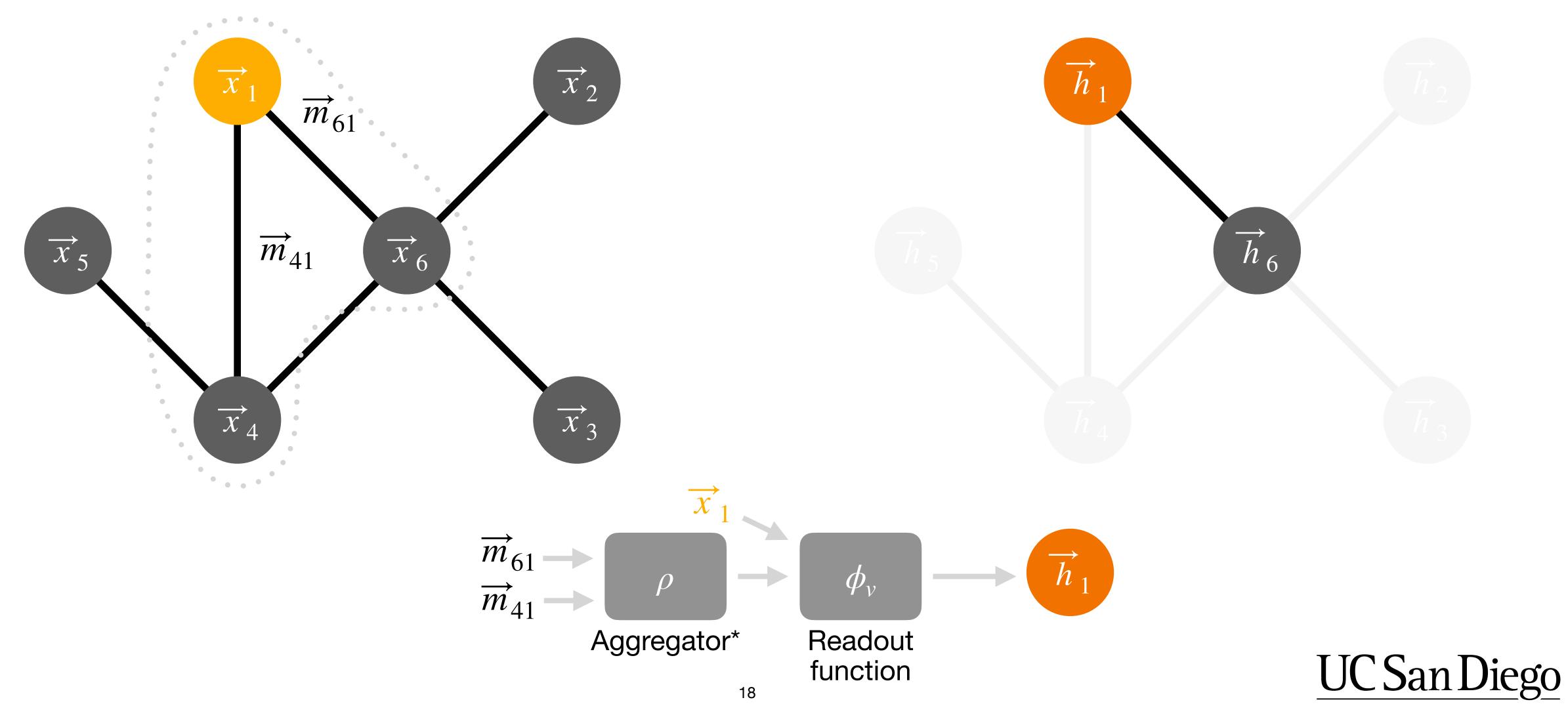
The GNN Algorithm Pass aggregation and Node 6 itself through readout function* to get latent representation of Node 6

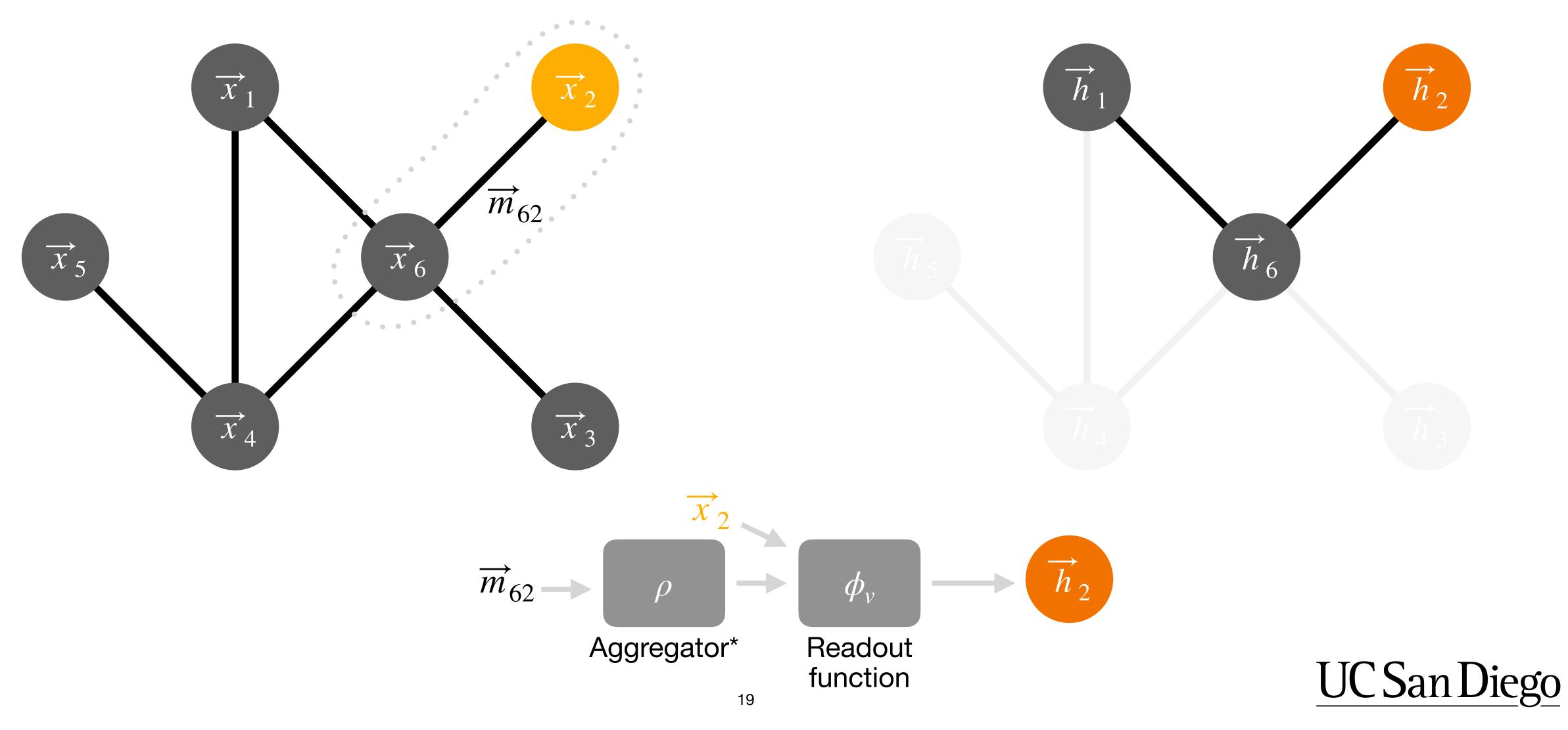


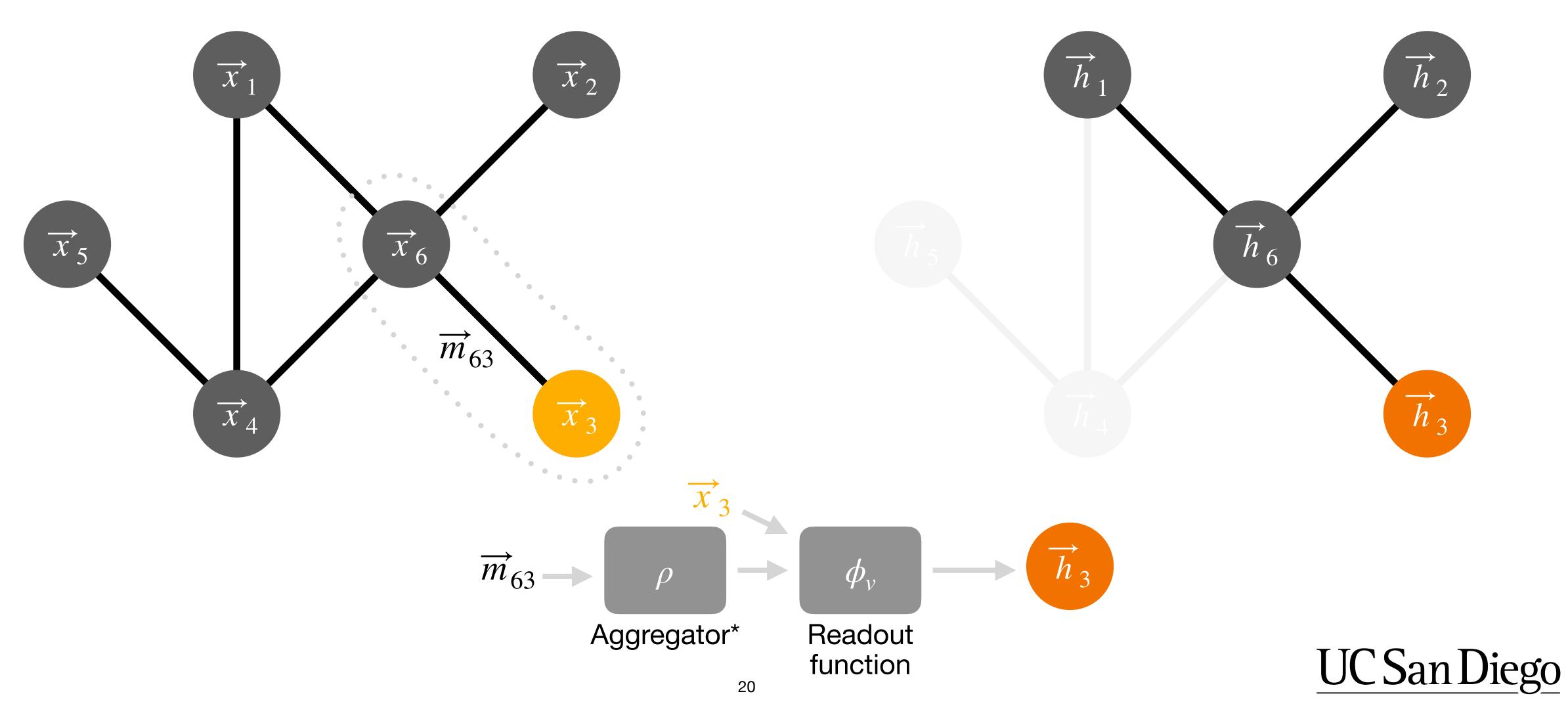
^{*}The "v" subscript in φ_v stands for "vertex" (i.e. node), per the vertex-like dimension of the function

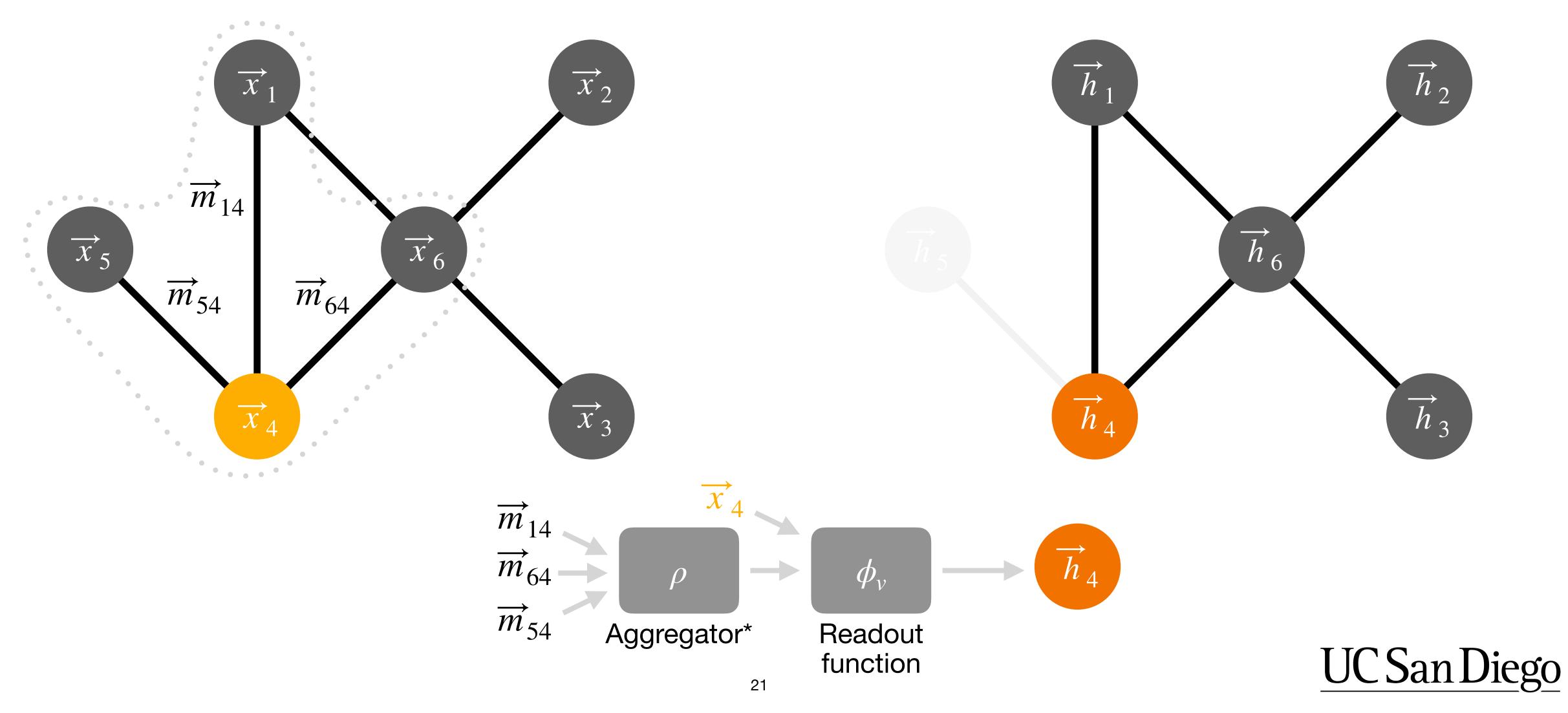


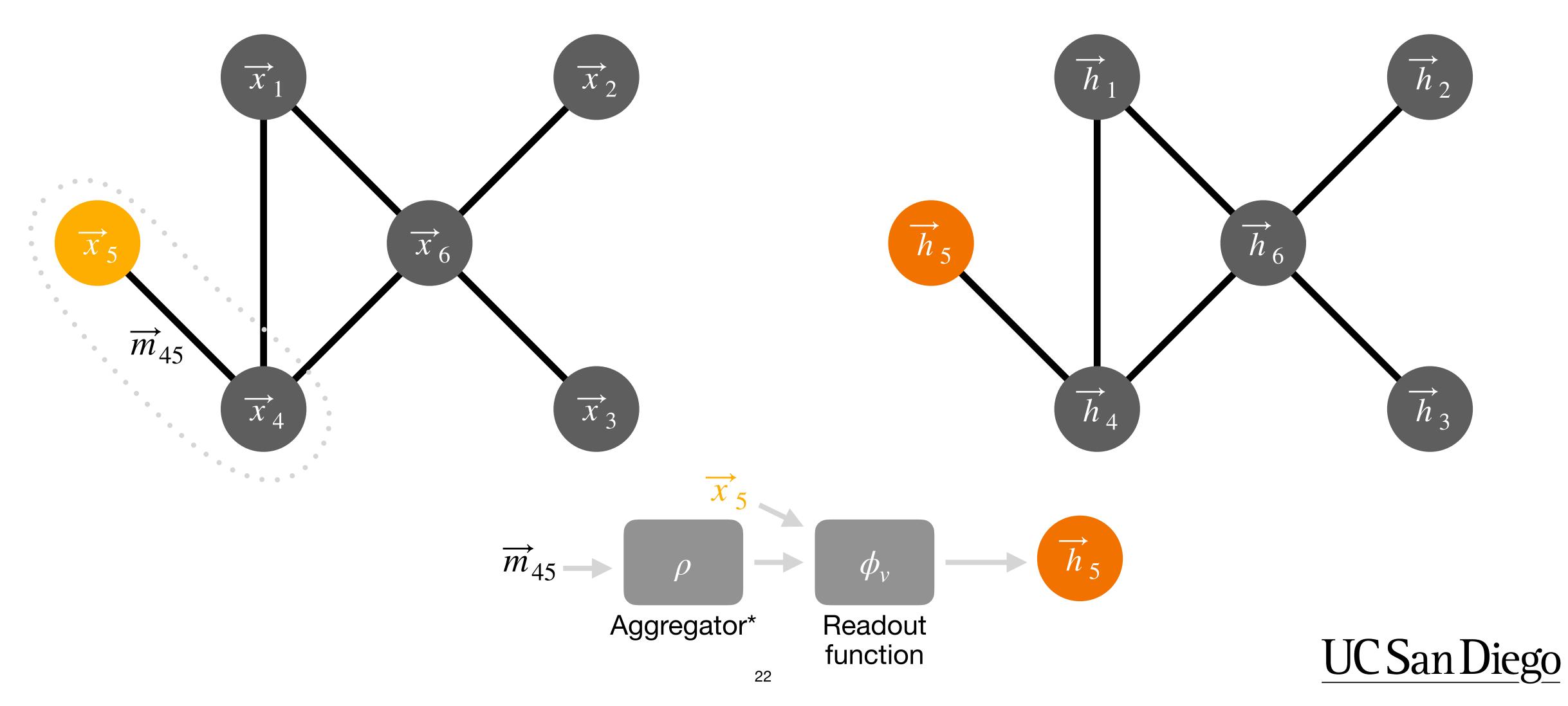


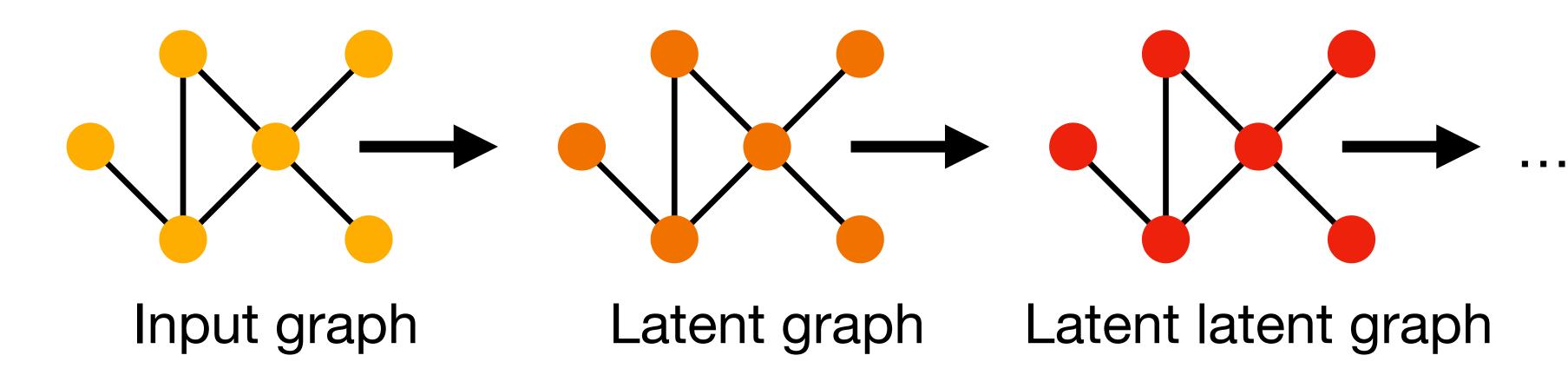










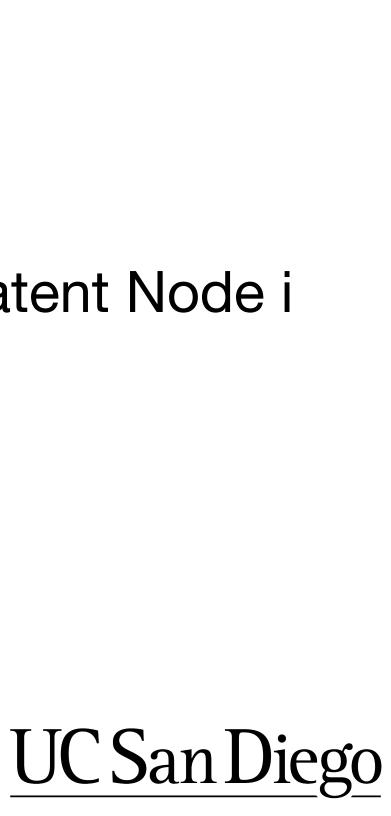


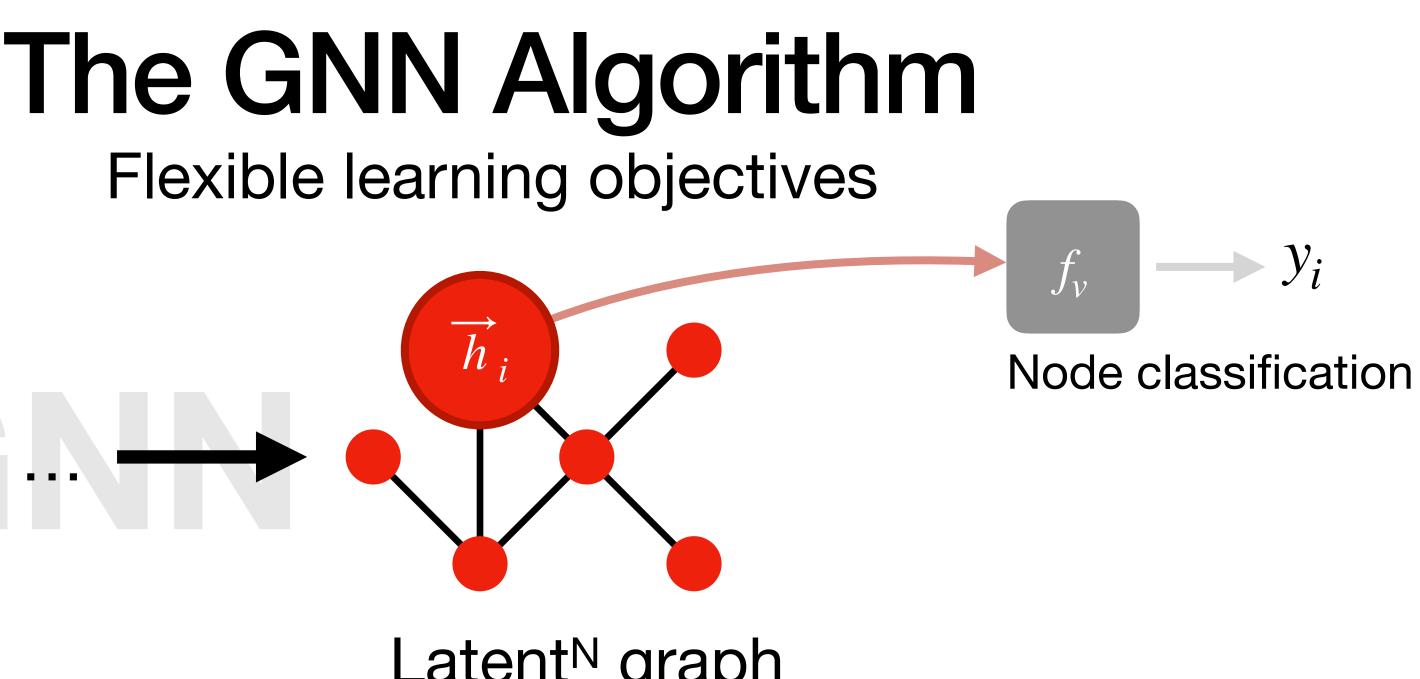
- Doing this multiple times effectively diffuses information across graph
 - Only takes a few rounds to "saturate" this process

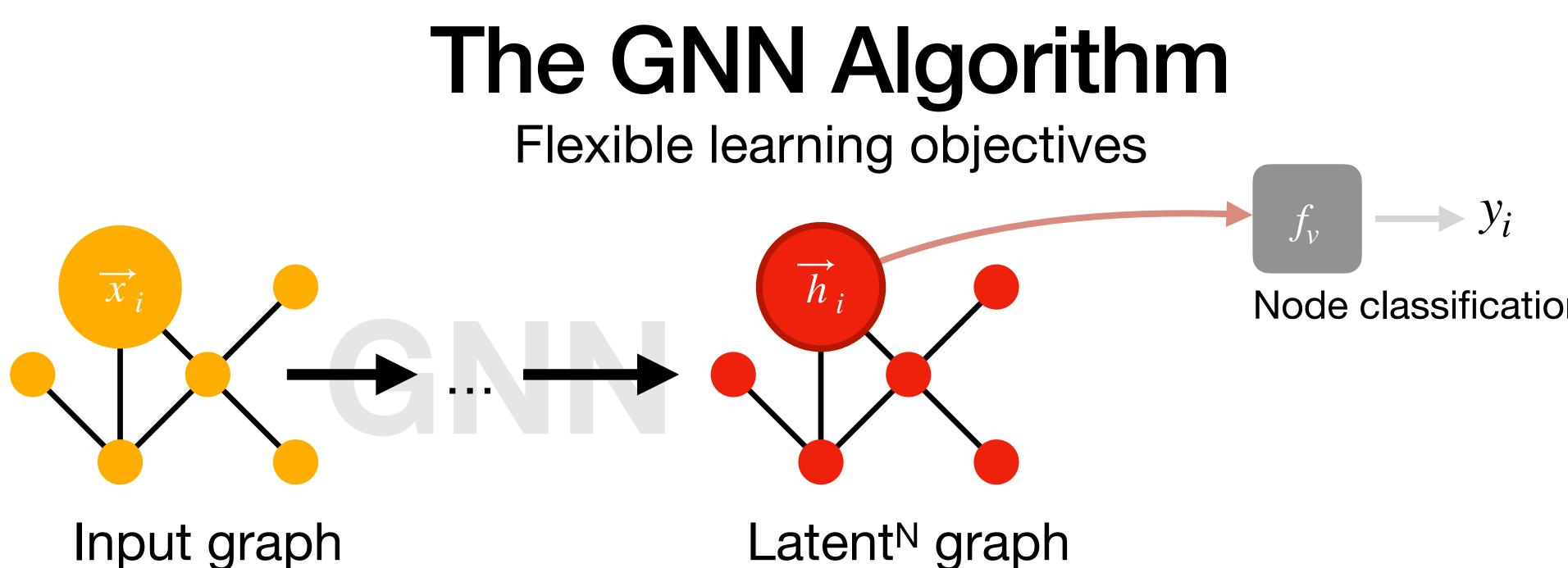
The GNN Algorithm

Can perform multiple rounds of message passing to diffuse graph information

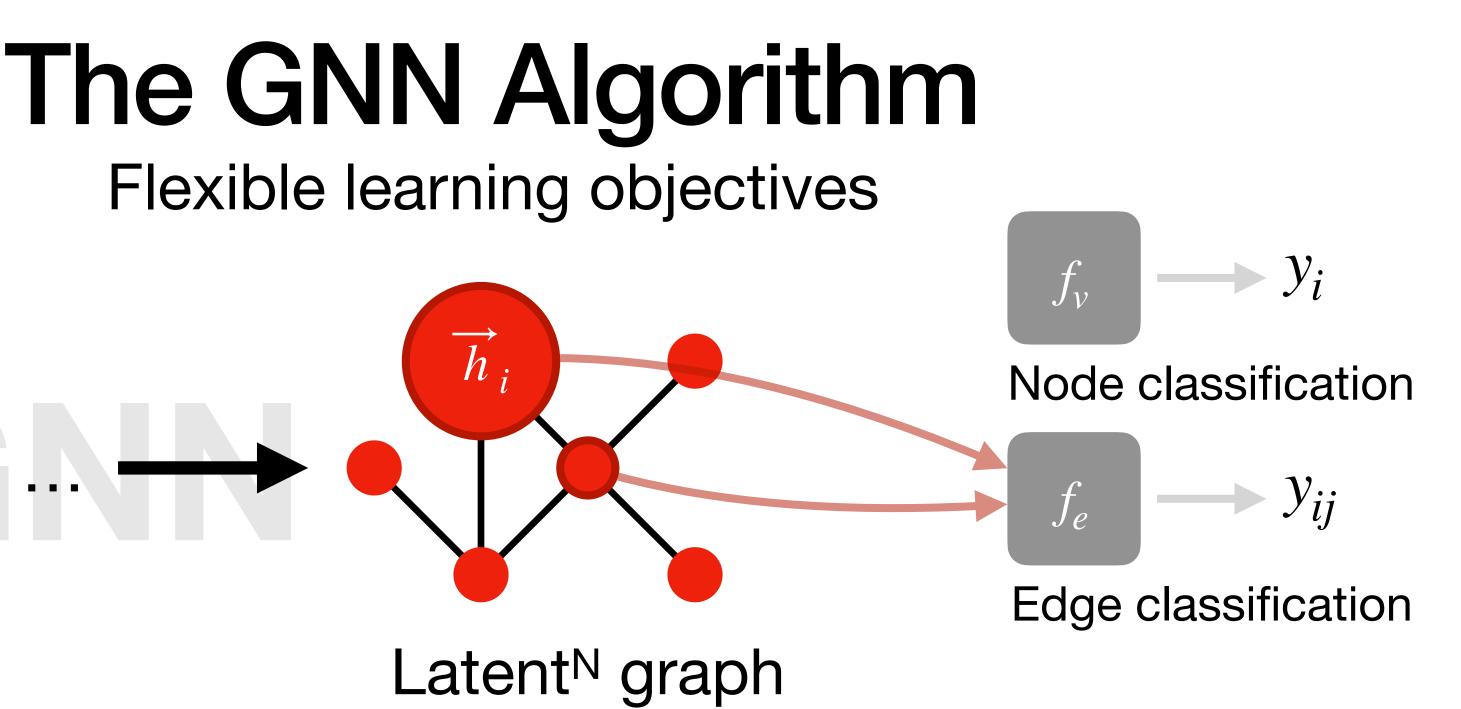
Each round of message passing aggregates info from neighbors of Node i to latent Node i

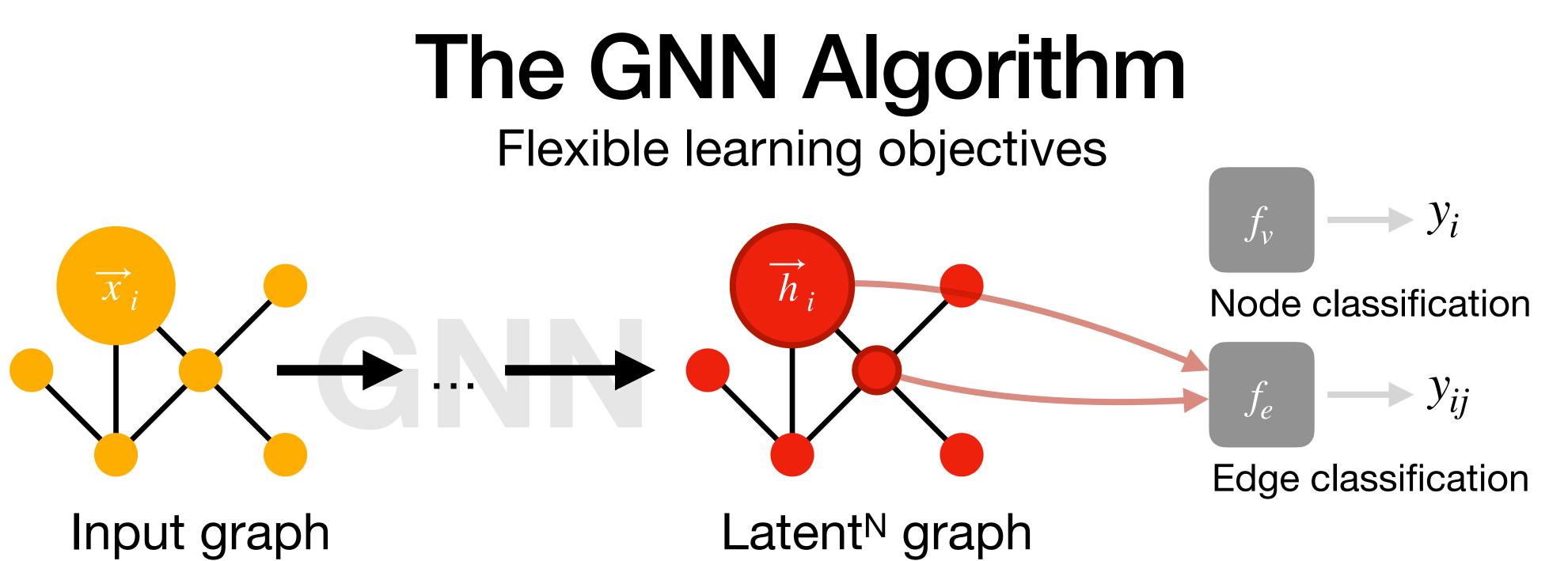




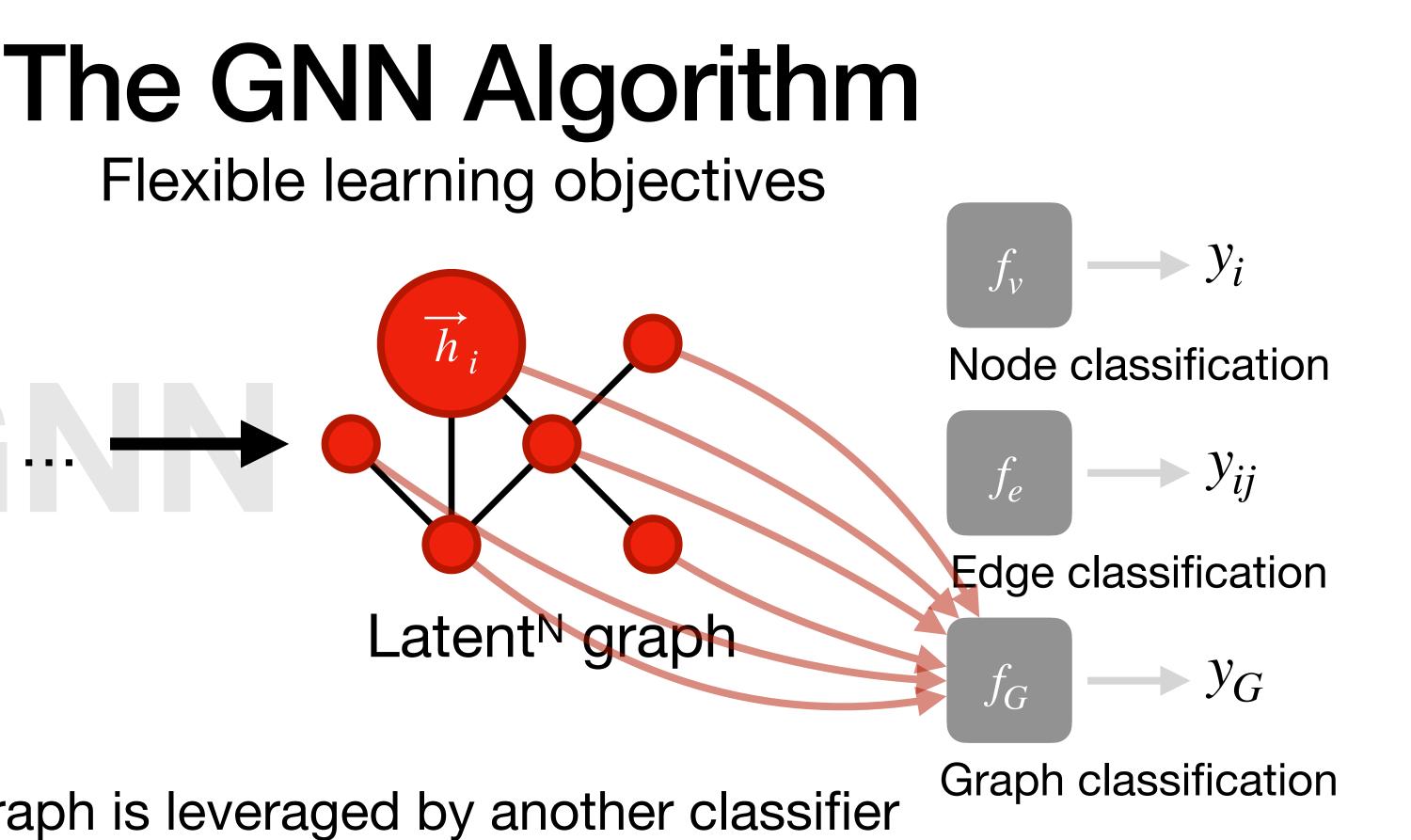


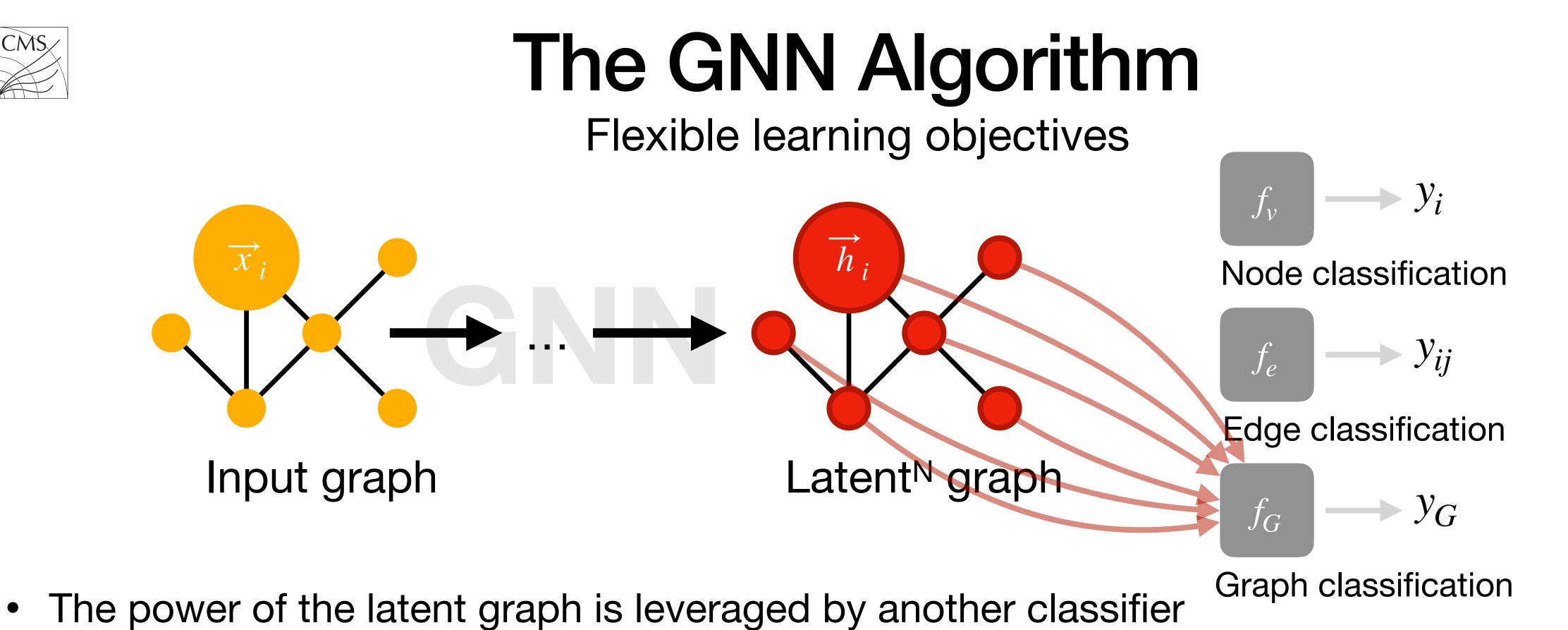
- The power of the latent graph is leveraged by another classifier
 - e.g. attach a MLP to the end of the GNN "pipeline" and train it to infer data about your input graph from the latent representation
- Can be done in three dimensions: node





- The power of the latent graph is leveraged by another classifier
 - e.g. attach a MLP to the end of the GNN "pipeline" and train it to infer data about your input graph from the latent representation
- Can be done in three dimensions: node, edge





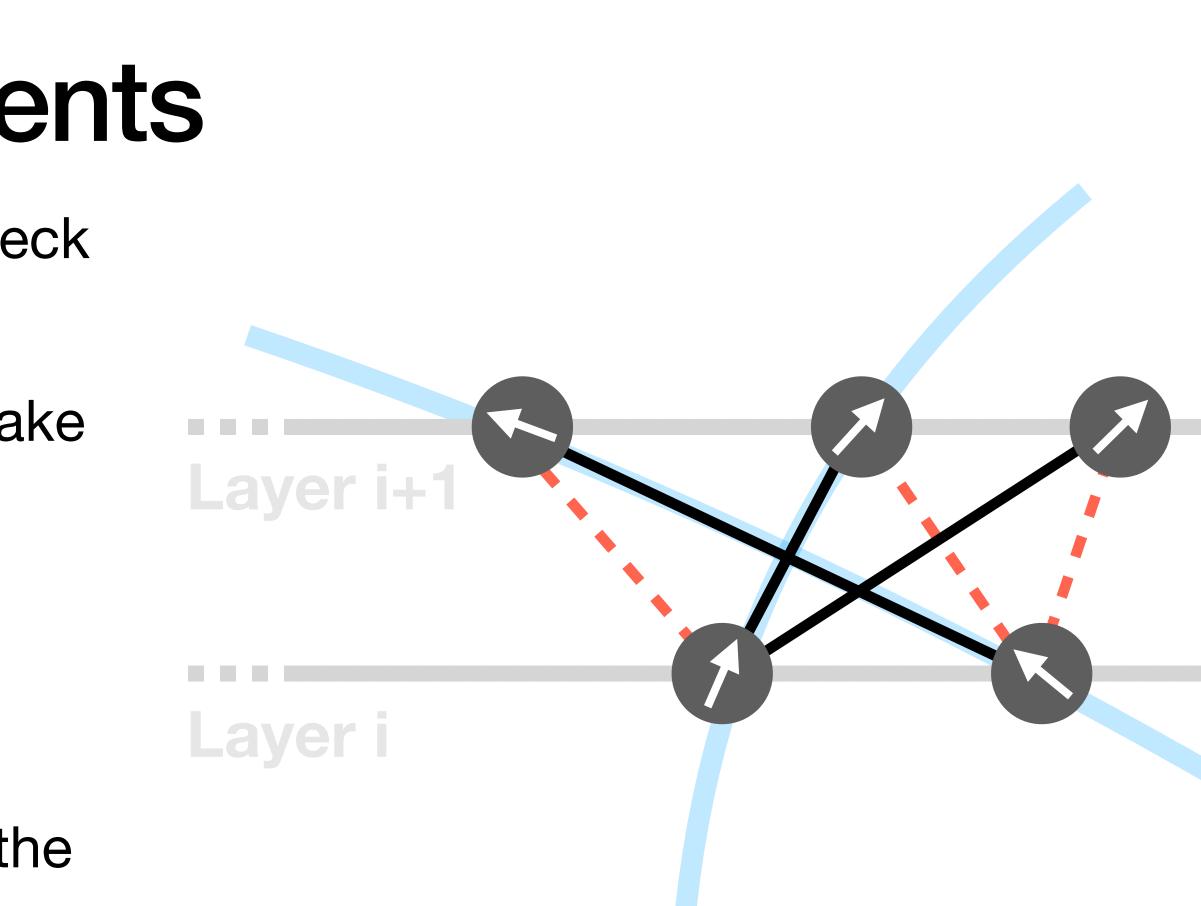
- - input graph from the latent representation
- Can be done in three dimensions: node, edge, graph

e.g. attach a MLP to the end of the GNN "pipeline" and train it to infer data about your

GNNs and LST

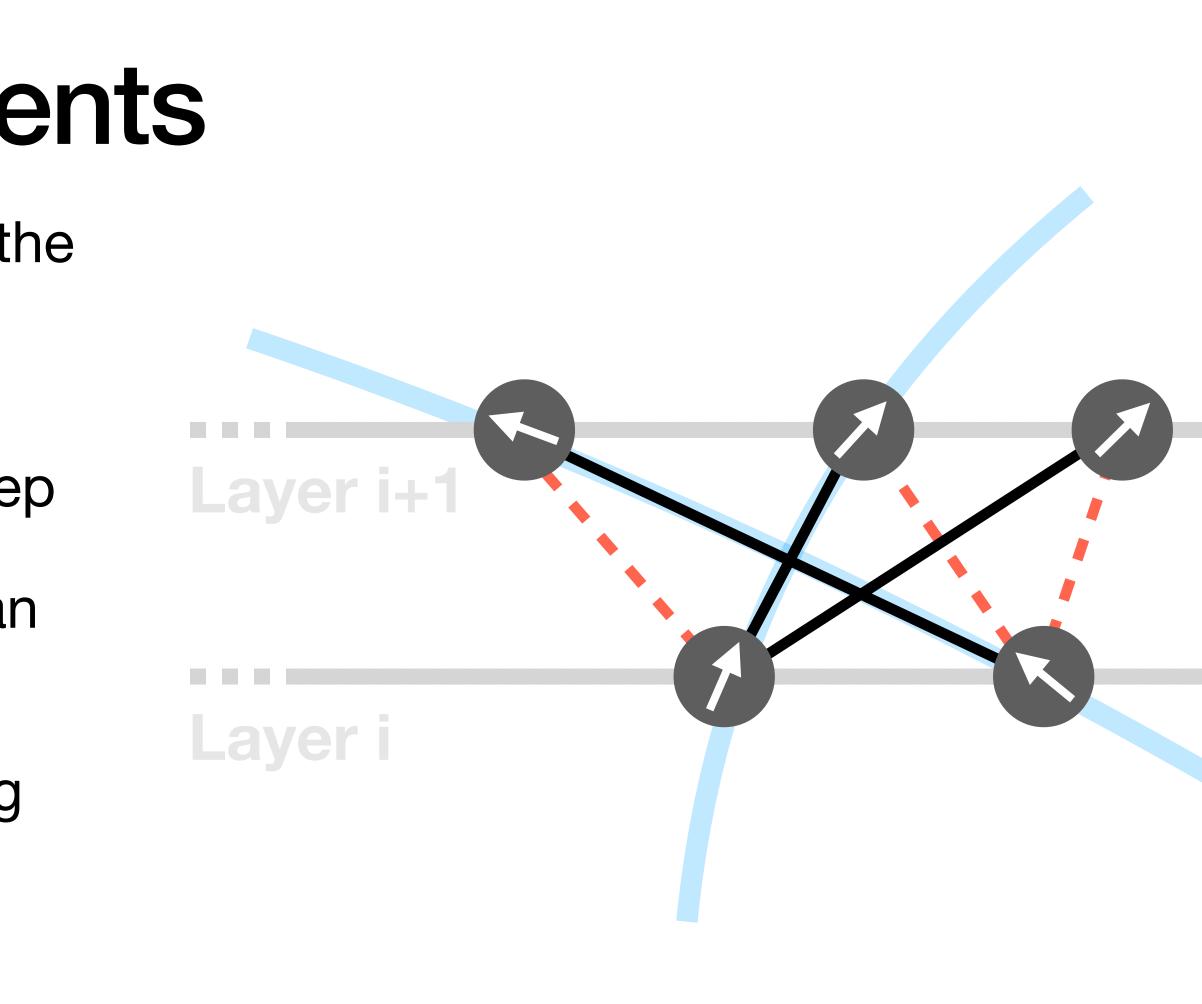
GNN LST: Line Segments

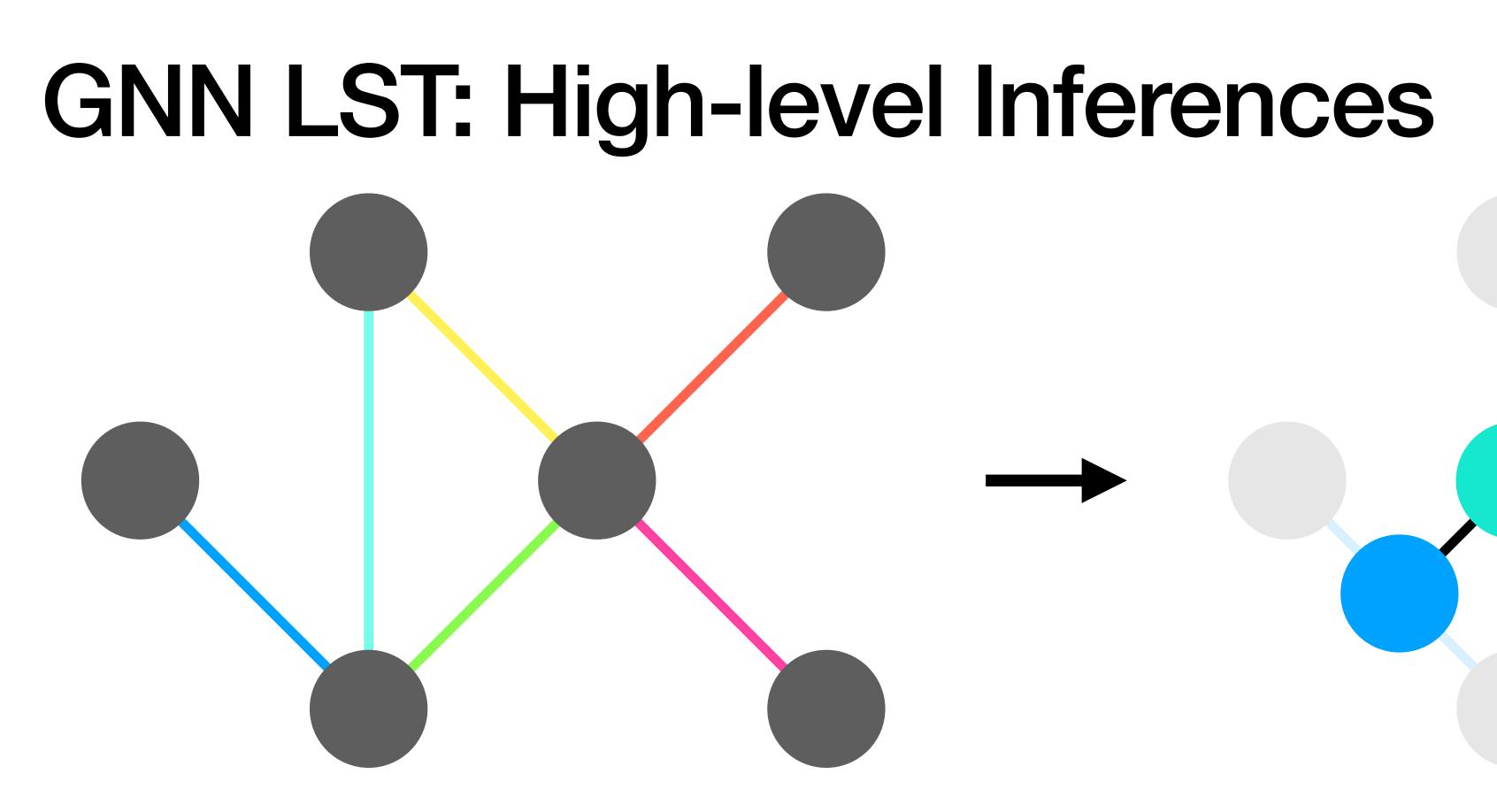
- Currently form all line segments and check for (rough) p_T consistency
- Because these are low level objects, make very loose cuts
 - Large # of true segments
 - Very large # of fake segments
- First exploration: can the GNN select the same # of true, but a smaller # of fake segments?



GNN LST: Line Segments

- First exploration: can the GNN select the same # of true, but a smaller # of fake segments?
- Run GNN on segments from LST LS step
- Philip has already done this, but only ran the simplest model
 - e.g. only 1 round of message passing
- Maybe also loosen p_T consistency cuts
 - We suspect this will only give more fakes and not much more true tracks





- For making high-level objects, can "pool" graph together in various ways
- e.g. Make every segment a node in a new graph
 - Then, connections between these nodes are triplet candidates

GNN LST: Stepwise Explorations

- triplets?
- quintuplets?
- . . .
- candidates?
- At each step, compare efficiency metrics with current LST algorithm

Second exploration: can the GNN select the same # of true, but a smaller # of fake

Third exploration: can the GNN select the same # of true, but a smaller # of fake

Nth exploration: can the GNN select the same # of true, but smaller # of fake track

Summary

- GNNs leverage interconnectivity of data to better use multiple MLPs towards a diverse set of classification problems
- We propose a step-wise exploration of incorporating GNNs into LST
 - Try to reconstruct different objects and compare efficiency/performance
 - i.e. walk our way from line segments to entire track candidates •
- Next steps:
 - Run Philip's existing GNN pipeline
 - Modify Philip's GNN
 - Compare # true and # fake LS (i.e. the "first exploration")

Backup

GNN Information Diffusion

- Each round of message passing aggregates info from neighbors of Node i to latent Node i
- Doing this multiple times effectively diffuses information across graph
- Only takes a few rounds to "saturate" this process

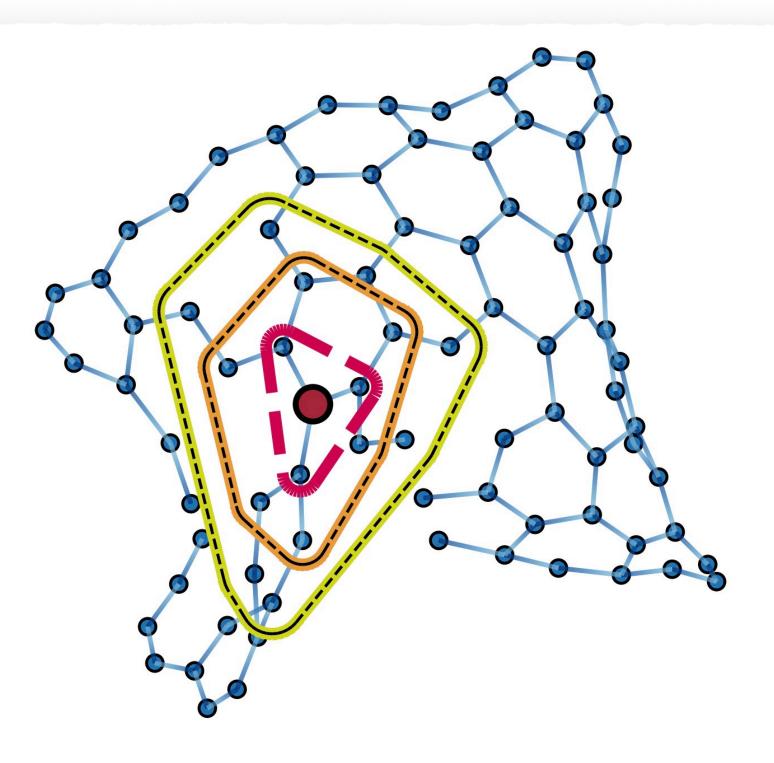


Fig. 10. The red, orange-highlighted, and yellow-highlighted dotted lines represent the enlarging neighborhood of nodes that may communicate with the red node after one, two, and three iterations of message passing, respectively [41]. Those nodes outside of the yellow-highlighted dotted boundary do not influence the red node after three iterations.

