
P. Chang, J. Guiang

1

GNN LST
An introduction to GNNs and an exploratory roadmap

February 21st, 2023

GNN Fundamentals

2

3

The GNN Algorithm: Notation

4

1

5 6

3

2

Graph

A =

0 0 0 1 0 1
0 0 0 0 0 1
0 0 0 0 0 1
1 0 0 0 1 1
0 0 0 1 0 0
1 1 1 1 0 0

Adjacency matrix

Connectivity of a graph can be represented as a matrix

4

The GNN Algorithm: Notation

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

Input graph

⃗x i =

x1
i

x2
i

x3
i
⋮
xm

i

Node i

⃗x j

⃗x i

⃗e ij =

e1
ij

e2
ij

e3
ij

⋮
em

ij

Edge ij

For GNNs, nodes and edges correspond to vectors of information

5

The GNN Algorithm: Notation

Input graph

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

Latent graph

⃗h 4

⃗h 1

⃗h 5

⃗h 3

⃗h 2

⃗h 6

GNN input is necessarily a graph (of course)

6

The GNN Algorithm

Input graph

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

Latent graph

⃗h 4

⃗h 1

⃗h 5

⃗h 3

⃗h 2

⃗h 6

Goal: transform input graph to latent representation 
(and bias transformation to encode information)

7

The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 1

⃗h 5

⃗h 3

⃗h 2

⃗h 6

Transformation is done node-wise, let’s start with Node 6

8

The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 1

⃗h 5

⃗h 3

⃗h 2

⃗h 6

ϕe

⃗x 1 ⃗x 6⃗e 16

Message function

⃗e 16

For each neighbor of Node 6 pass link information into message function*

*The “e” subscript in φe stands for “edge,” per the edge-like dimension of the function

9

The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 1

⃗h 5

⃗h 3

⃗h 2

⃗h 6

ϕe

⃗x 1 ⃗x 6

⃗m16

Message function

Message⃗m16

Message function produces a message conditioned by edge features

⃗e 16

10

The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 1

⃗h 5

⃗h 3

⃗h 2

⃗h 6

⃗x 1 ⃗x 6⃗e 16

⃗m16⃗m16

The message function is usually Multilayer Perceptron (MLP)

ϕe

ϕe

⃗x 1 ⃗x 6⃗e 16

⃗m16

=

11

The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 1

⃗h 5

⃗h 3

⃗h 2

⃗h 6

ϕe

⃗x 4 ⃗x 6⃗e 46

⃗m46

Message function

Message

⃗m46

⃗m16

Compute a message for every neighbor of Node 6

12

The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 1

⃗h 5

⃗h 3

⃗h 2

⃗h 6

ϕe

⃗x 3 ⃗x 6⃗e 36

⃗m36

Message function

Message

⃗m46

⃗m16

⃗m36

Compute a message for every neighbor of Node 6

13

The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 1

⃗h 5

⃗h 3

⃗h 2

⃗h 6

ϕe

⃗x 2 ⃗x 6⃗e 26

⃗m26

Message function

Message

⃗m46

⃗m16

⃗m36

⃗m26

Compute a message for every neighbor of Node 6

14

The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 1

⃗h 5

⃗h 3

⃗h 2

⃗h 6ρv

⃗m46

⃗m16

⃗m36

⃗m26 ⃗m16
⃗m26
⃗m36
⃗m46 Aggregator*

ρ

Next, we aggregate all messages together

*Must be permutation invariant, e.g. a simple sum: ⃗m16 + ⃗m26 + ⃗m36 + ⃗m46

15

The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 1

⃗h 5

⃗h 3

⃗h 2

⃗h 6

⃗m46

⃗m16

⃗m36

⃗m26 ⃗m16
⃗m26
⃗m36
⃗m46 Aggregator*

ρ ϕv

⃗x 6

Readout 
function

Pass aggregation and Node 6 itself through readout function* 
to get latent representation of Node 6

*The “v” subscript in φv stands for “vertex” (i.e. node), per the vertex-like dimension  
 of the function

16

The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 1

⃗h 5

⃗h 3

⃗h 2

⃗h 6

⃗m46

⃗m16

⃗m36

⃗m26 ⃗m16
⃗m26
⃗m36
⃗m46

ϕv

Readout 
function

The readout function is also usually a MLP

ρ

Aggregator*

⃗x 6

ϕv

⃗x 6ρ(⃗m16, ⃗m26, ⃗m36, ⃗m46)

⃗h 6

17

The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 1

⃗h 5

⃗h 3

⃗h 2

⃗h 6

⃗m46

⃗m16

⃗m36

⃗m26 ⃗m16
⃗m26
⃗m36
⃗m46 Aggregator*

ρ ϕv

⃗x 6

Readout 
function

Finally, repeat process for all nodes in the graph

18

The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 5

⃗h 3

⃗h 2

⃗h 6

⃗h 1

⃗m41

⃗m61

⃗m61
⃗m41

Aggregator*

ρ ϕv

⃗x 1

Readout 
function

Finally, repeat process for all nodes in the graph

⃗h 1

19

The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 5

⃗h 3

⃗h 2

⃗h 6

⃗h 1

⃗m62

⃗m62

Aggregator*

ρ ϕv

⃗x 2

Readout 
function

Finally, repeat process for all nodes in the graph

⃗h 2

20

The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 5

⃗h 3

⃗h 2

⃗h 6

⃗h 1

⃗m63

⃗m63

Aggregator*

ρ ϕv

⃗x 3

Readout 
function

Finally, repeat process for all nodes in the graph

⃗h 3

21

The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 5

⃗h 4
⃗h 3

⃗h 2

⃗h 6

⃗h 1

⃗m64⃗m54

⃗m14
⃗m64

⃗m54 Aggregator*

ρ ϕv

⃗x 4

Readout 
function

Finally, repeat process for all nodes in the graph

⃗h 4

⃗m14

22

The GNN Algorithm

⃗x 4

⃗x 1

⃗x 5 ⃗x 6

⃗x 3

⃗x 2

⃗h 4

⃗h 5

⃗h 3

⃗h 2

⃗h 6

⃗h 1

⃗m45

⃗m45

Aggregator*

ρ ϕv

⃗x 5

Readout 
function

Finally, repeat process for all nodes in the graph

⃗h 5

23

The GNN Algorithm
Can perform multiple rounds of message passing to diffuse graph information

Input graph Latent graph

…

Latent latent graph

• Each round of message passing aggregates info from neighbors of Node i to latent Node i

• Doing this multiple times effectively diffuses information across graph

• Only takes a few rounds to “saturate” this process

24

The GNN Algorithm
Flexible learning objectives

• The power of the latent graph is leveraged by another classifier

• e.g. attach a MLP to the end of the GNN “pipeline” and train it to infer data about your
input graph from the latent representation

• Can be done in three dimensions: node

Input graph

⃗x i
⃗h i

GNN
LatentN graph

…
Node classification

fv yi

25

The GNN Algorithm
Flexible learning objectives

Input graph

⃗x i
⃗h i

GNN
LatentN graph

…
Node classification

fv yi

Edge classification

fe yij

• The power of the latent graph is leveraged by another classifier

• e.g. attach a MLP to the end of the GNN “pipeline” and train it to infer data about your
input graph from the latent representation

• Can be done in three dimensions: node, edge

26

The GNN Algorithm

• The power of the latent graph is leveraged by another classifier

• e.g. attach a MLP to the end of the GNN “pipeline” and train it to infer data about your
input graph from the latent representation

• Can be done in three dimensions: node, edge, graph

Flexible learning objectives

Input graph

⃗x i
⃗h i

GNN
LatentN graph

…
Node classification

fv yi

Edge classification

fe yij

Graph classification

fG yG

GNNs and LST

27

28

• Currently form all line segments and check
for (rough) pT consistency

• Because these are low level objects, make
very loose cuts

• Large # of true segments

• Very large # of fake segments

• First exploration: can the GNN select the
same # of true, but a smaller # of fake
segments?

GNN LST: Line Segments

Layer i

Layer i+1

29

• First exploration: can the GNN select the
same # of true, but a smaller # of fake
segments?

• Run GNN on segments from LST LS step

• Philip has already done this, but only ran
the simplest model

• e.g. only 1 round of message passing

• Maybe also loosen pT consistency cuts

• We suspect this will only give more fakes
and not much more true tracks

GNN LST: Line Segments

Layer i

Layer i+1

30

• For making high-level objects, can “pool” graph together in various ways

• e.g. Make every segment a node in a new graph

• Then, connections between these nodes are triplet candidates

GNN LST: High-level Inferences

31

• Second exploration: can the GNN select the same # of true, but a smaller # of fake
triplets?

• Third exploration: can the GNN select the same # of true, but a smaller # of fake
quintuplets?

• …

• Nth exploration: can the GNN select the same # of true, but smaller # of fake track
candidates?

• At each step, compare efficiency metrics with current LST algorithm

GNN LST: Stepwise Explorations

32

• GNNs leverage interconnectivity of data to better use multiple MLPs towards a diverse
set of classification problems

• We propose a step-wise exploration of incorporating GNNs into LST

• Try to reconstruct different objects and compare efficiency/performance

• i.e. walk our way from line segments to entire track candidates

• Next steps:

• Run Philip’s existing GNN pipeline

• Modify Philip’s GNN

• Compare # true and # fake LS (i.e. the “first exploration”)

Summary

Backup

33

34

• Each round of message passing aggregates
info from neighbors of Node i to latent Node i

• Doing this multiple times effectively diffuses
information across graph

• Only takes a few rounds to “saturate” this
process

GNN Information Diffusion

