GNN LST

An introduction to GNNs and an exploratory roadmap
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GNN Fundamentals
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The GNN Algorithm: Notation

Connectivity of a graph can be represented as a matrix
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Graph Adjacency matrix
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The GNN Algorithm: Notation

For GNNs, nodes and edges correspond to vectors of information
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Input graph
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The GNN Algorithm: Notation

GNN input is necessarily a graph (of course)

Input graph Latent graph
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The GNN Algorithm

Goal: transform input graph to latent representation

Input graph Latent graph
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The GNN Algorithm

Transformation is done node-wise, let’s start with Node 6
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The GNN Algorithm

For each neighbor of Node 6 pass link information into message function*
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Message function
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*The “e” subscript in ¢e stands for “edge,” per the edge-like dimension of the function UC S D-
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The GNN Algorithm

Message function produces a message conditioned by edge features
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Message function
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The GNN Algorithm

The message function is usually Multilayer Perceptron (MLP)
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The GNN Algorithm

Compute a message for every neighbor of Node 6

Message
. Message function
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The GNN Algorithm

Compute a message for every neighbor of Node 6
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The GNN Algorithm

Compute a message for every neighbor of Node 6
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The GNN Algorithm

Next, we aggregate all messages together
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*Must be permutation invariant, e.g. a simple sum: 17 + MM + Msg + My UC S D-
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The GNN Algorithm

Pass aggregation and Node 6 itself through readout function*
to get latent representation of Node 6
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778 46 Aggregator® Readout

function

*The “v” subscript in ¢y stands for “vertex” (i.e. node), per the vertex-like dimension .
of the function UC San Dleg()
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The GNN Algorithm

The readout function is also usually a MLP
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The GNN Algorithm

Finally, repeat process for all nodes in the graph
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The GNN Algorithm

Finally, repeat process for all nodes in the graph

Aggregator” Readout
function
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The GNN Algorithm

Finally, repeat process for all nodes in the graph

Aggregator” Readout
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The GNN Algorithm

Finally, repeat process for all nodes in the graph
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The GNN Algorithm

Finally, repeat process for all nodes in the graph

Aggregator” Readout
function
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The GNN Algorithm

Finally, repeat process for all nodes in the graph

Aggregator” Readout
function
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The GNN Algorithm

Can perform multiple rounds of message passing to diffuse graph information

\ '
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Input graph Latent graph Latent latent graph

 Each round of message passing aggregates info from neighbors of Node i to latent Node |
* Doing this multiple times effectively diffuses information across graph

* Only takes a few rounds to “saturate” this process
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The GNN Algorithm

Flexible learning objectives

Yi
Node classification
N/
NN ':ik:

Input graph LatentN graph

 The power of the latent graph is leveraged by another classifier

e e.g. attach a MLP to the end of the GNN “pipeline” and train it to infer data about your
input graph from the latent representation

e Can be done in three dimensions: node
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The GNN Algorithm

Flexible learning objectives

Yi
Node classification
N/
NN ':ik: z

Edge classification
Input graph LatentN graph

 The power of the latent graph is leveraged by another classifier

e e.g. attach a MLP to the end of the GNN “pipeline” and train it to infer data about your
input graph from the latent representation

 Can be done in three dimensions: node, edge
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The GNN Algorithm

Flexible learning objectives

Vi
Node classification
./ I [
\| / \ Yii
Edge classification

Input graph Latent™Mgraph

YG

 The power of the latent graph is leveraged by another classifier Graph classification

e e.g. attach a MLP to the end of the GNN “pipeline” and train it to infer data about your
input graph from the latent representation

 Can be done in three dimensions: node, edge, graph
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GNNs and LST
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GNN LST: Line Segments

e Currently form all line segments and check
for (rough) pr consistency

 Because these are low level objects, make
very loose cuts

 [arge # of true segments

* \ery large # of fake segments

* First exploration: can the GNN select the

[

same # of true, but a smaller # of fake
segments?

|
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GNN LST: Line Segments

* First exploration: can the GNN select the
same # of true, but a smaller # of fake
segments?

* Run GNN on segments from LST LS step

* Philip has already done this, but only ran
the simplest model

* e.g.only 1 round of message passing
* Maybe also loosen pr consistency cuts

* We suspect this will only give more fakes
and not much more true tracks
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GNN LST: High-level Inferences
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* For making high-level objects, can “pool” graph together in various ways

* e.g. Make every segment a node in a new graph

 Then, connections between these nodes are triplet candidates
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GNN LST: Stepwise Explorations

 Second exploration: can the GNN select the same # of true, but a smaller # of fake
triplets??

|

* Third exploration: can the GNN select the same # of true, but a smaller # of fake
quintuplets?

* Nth exploration: can the GNN select the same # of true, but smaller # of fake track
candidates?

* At each step, compare efficiency metrics with current LST algorithm
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Summary

 GNNs leverage interconnectivity of data to better use multiple MLPs towards a diverse
set of classification problems

* We propose a step-wise exploration of incorporating GNNs into LST
* Try to reconstruct different objects and compare efficiency/performance
* |.e. walk our way from line segments to entire track candidates

* Next steps:

. Bun Philin tina GNN_pinal
* Modify Philip’s GNN

* Compare # true and # fake LS (i.e. the “first exploration”)
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GNN Information Diffusion

 Each round of message passing aggregates
info from neighbors of Node i to latent Node |

* Doing this multiple times effectively diffuses
information across graph

* Only takes a few rounds to “saturate” this
process
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Fig. 10. The red, orange-highlighted, and yellow-highlighted dotted lines represent the
enlarging neighborhood of nodes that may communicate with the red node after one, two,
and three iterations of message passing, respectively [41]. Those nodes outside of the
yellow-highlighted dotted boundary do not influence the red node after three iterations.

34

e e S ———

UC San Diego




